sachaguer commited on
Commit
725e11b
1 Parent(s): f6a8b92

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1719.81 +/- 66.96
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a110b5c35847000172d2e89d65e3ebf5d3dc44dea6029b29fc3b0ed8359e9c22
3
+ size 129325
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f71a2da5ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f71a2da5d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f71a2da5dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f71a2da5e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f71a2da5ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f71a2da5f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f71a2da3040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f71a2da30d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f71a2da3160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f71a2da31f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f71a2da3280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f71a2da3310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f71a2da80c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679158611030192007,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFMvaG9tZS9zYWNoYS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUy9ob21lL3NhY2hhL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAc+Gj86i7m96CsSP4Tdbz/X/ao/qHKbP5+wVD+cDU6/n+4NPqi6lD761r8/1qexv+GtOr+niJ4/8p9kv+sMZj1WZ3a/XR/bPsPDPT/q62U8/xBaP/fHQb/ZJ40/sODbPopri79s6fQ+P2y5PtW7HT9xo58/Y04bvwW1JD9lBPo/+l3SP2D0nD9/UHM/SmyRvzNf/r3eBN++rpEVPWOfsr/ZZBs/nRA9P9Njv75Qp4A/hBdiv/nZzL7qPz0//w/BPPWEmL5CNei/SB64PzQTPj6Ka4u/bOn0Pj9suT7Vux0/82sSP+0KjD6R3sg+vBxoP2q/HL+2djnAwM9Nvof7z74emti+kB6jP7+gkj/jk5M+kcMGvyVP9L8m3mc/Ks8Vv9jIxb8Sack9aCJVvV7Wgj4Sz8U/W0V4QJVNVT+Ljl+/imuLv4vLBcA/bLk+Fb7Pv6wDiD/UXG8+FLDVPvoYBj/241C9EcD8vyXXmj2/JXC/x6s/vwEnG76Qqp4/1sadP7Di+b7Z9sq/zKDGPrIc1T85WMS/LIaQv5qOhT53POy/FF3TvqYrHEDuP60/s2Davopri7+LywXAP2y5PhW+z7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADBb6W2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwM8EPAAAAADX5vC/AAAAAG14DL4AAAAAYMDdPwAAAADQMOw8AAAAAGJh6D8AAAAArCzMPQAAAABsiOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqKXtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMpDEj4AAAAAaWjxvwAAAADeN+A9AAAAALaJ8T8AAAAALNMMvgAAAACrSvc/AAAAACv9+70AAAAAJGLxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH33EjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA28O+9AAAAAAg63r8AAAAAffYMPgAAAADwsPw/AAAAAA89Vz0AAAAAYYbzPwAAAABQPXa9AAAAAPIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPznS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/cTwPQAAAABqsvq/AAAAAOe9k70AAAAA6zjoPwAAAABF1k69AAAAAN0x7z8AAAAAdKehvQAAAAAHz/O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJorNjx0+1WMAWyUTegDjAF0lEdApx8KF23az3V9lChoBkdAml+fOyE+PmgHTegDaAhHQKcfX1q33Ht1fZQoaAZHQJr5F72L5yloB03oA2gIR0CnIbhG6PKddX2UKGgGR0CYkFAMUh3aaAdN6ANoCEdApyR1ZDArQXV9lChoBkdAmAlPW6K+BmgHTegDaAhHQKcquCaqjrR1fZQoaAZHQJWPUZVGTcJoB03oA2gIR0CnKxb48EFGdX2UKGgGR0CWSBGQSzw+aAdN6ANoCEdApy1TI/7iynV9lChoBkdAl1f8ENe+mGgHTegDaAhHQKcwAoBJZnt1fZQoaAZHQJZ1rq+rU9ZoB03oA2gIR0CnNzfOt4iYdX2UKGgGR0CXh2/Aj6eoaAdN6ANoCEdApzeMhC+lCXV9lChoBkdAmX7hQzk6tGgHTegDaAhHQKc6RTJhfBx1fZQoaAZHQJkzmwD/2kBoB03oA2gIR0CnPRwjt5UtdX2UKGgGR0CUf0ePJaJRaAdN6ANoCEdAp0TjoyKvV3V9lChoBkdAlvkiiudPL2gHTegDaAhHQKdFNSgGr0d1fZQoaAZHQJbhgm4RVZNoB03oA2gIR0CnR6gdOqNqdX2UKGgGR0CVNhvM8ox6aAdN6ANoCEdAp0pPdRBNVXV9lChoBkdAmWUOfZmI02gHTegDaAhHQKdQLHlwLmZ1fZQoaAZHQJeR/8ZUDMhoB03oA2gIR0CnUKdsBQvYdX2UKGgGR0CVWIJ4jbBXaAdN6ANoCEdAp1N4f+0gKXV9lChoBkdAmws+sHSncmgHTegDaAhHQKdWYU34sVd1fZQoaAZHQJ42HPyCnP5oB03oA2gIR0CnXp3cYZVGdX2UKGgGR0Ca+COSGJvYaAdN6ANoCEdAp18baPCEYnV9lChoBkdAmuAFjurp7mgHTegDaAhHQKdjcWJJoTR1fZQoaAZHQJufPUwztTloB03oA2gIR0CnZ2/F72L6dX2UKGgGR0CZSM2/zreJaAdN6ANoCEdAp27AlpoK2XV9lChoBkdAmcfTABT4tmgHTegDaAhHQKdvDHR1HON1fZQoaAZHQJiPIxnFo+RoB03oA2gIR0CncS4kVvdedX2UKGgGR0CZIQr8BMi9aAdN6ANoCEdAp3OlqSHM2XV9lChoBkdAmZYArQPZqWgHTegDaAhHQKd50ji4rjJ1fZQoaAZHQJnxZb2USqVoB03oA2gIR0Cneic9nscAdX2UKGgGR0CbeF2+fywwaAdN6ANoCEdAp3y8FEAo5XV9lChoBkdAm59zguRLb2gHTegDaAhHQKd/elhw2l51fZQoaAZHQJqorHuJDVpoB03oA2gIR0CnhcvE87p3dX2UKGgGR0Cc+MQN0/4ZaAdN6ANoCEdAp4YkBjnV5XV9lChoBkdAmwzLr5ZbIWgHTegDaAhHQKeIn+I/JNl1fZQoaAZHQJ1z+kM1CPZoB03oA2gIR0CnjS5PM0P6dX2UKGgGR0Cbxf2fTTfBaAdN6ANoCEdAp5UdtfoicHV9lChoBkdAna5LZrYXf2gHTegDaAhHQKeVeXvYvnN1fZQoaAZHQJpZdUrCm/FoB03oA2gIR0CnmMXwb2lEdX2UKGgGR0Ca9sNt65XmaAdN6ANoCEdAp5wjsIE8rHV9lChoBkdAmeiDPKMefmgHTegDaAhHQKeimsUZeiV1fZQoaAZHQJvbzoX9BKNoB03oA2gIR0CnovpZGKAKdX2UKGgGR0CeFwRsuWa+aAdN6ANoCEdAp6WJZjhDPXV9lChoBkdAm5jkORT0hGgHTegDaAhHQKepEgf2bod1fZQoaAZHQJvQtTefqX5oB03oA2gIR0CnsapNj9XLdX2UKGgGR0CbsmSRr8BNaAdN6ANoCEdAp7H9r433pXV9lChoBkdAmmsOWGATZmgHTegDaAhHQKe0Ow5eZ5R1fZQoaAZHQJtbSiWVu79oB03oA2gIR0CnttFP8AJcdX2UKGgGR0CVhTRBNVR2aAdN6ANoCEdAp70ylnAZbnV9lChoBkdAmBQhRhttRGgHTegDaAhHQKe9gSoOx0N1fZQoaAZHQJoak5n13+xoB03oA2gIR0Cnv9Y4p+c6dX2UKGgGR0CY+tujynUEaAdN6ANoCEdAp8JhMSK3u3V9lChoBkdAl5ima6STyWgHTegDaAhHQKfIJ1RtP551fZQoaAZHQJnJEbrC3w1oB03oA2gIR0CnyHWnTAnEdX2UKGgGR0Ca5bqDsdDIaAdN6ANoCEdAp8qgfMfRu3V9lChoBkdAmYWyUC7sfWgHTegDaAhHQKfNJaTwDvF1fZQoaAZHQJp0rpljEvVoB03oA2gIR0Cn03E6tDD1dX2UKGgGR0CYnKkleF+NaAdN6ANoCEdAp9O8sQNCq3V9lChoBkdAmzpYyTINmWgHTegDaAhHQKfV1yq+8Gt1fZQoaAZHQJt3HQnhKlJoB03oA2gIR0Cn2F2KdhAodX2UKGgGR0CZRLPci4axaAdN6ANoCEdAp94FVxS5y3V9lChoBkdAnLX3XqZ+hGgHTegDaAhHQKfeU00FbFF1fZQoaAZHQJoTDLt/nW9oB03oA2gIR0Cn4HrSeAd5dX2UKGgGR0CbFI0zTF2naAdN6ANoCEdAp+L4rFwT/XV9lChoBkdAms+4VmBe5WgHTegDaAhHQKfpRvCuU2V1fZQoaAZHQJqkgVJtix5oB03oA2gIR0Cn6aLk0aZQdX2UKGgGR0Ca9qBPsRg7aAdN6ANoCEdAp+vatvGZNXV9lChoBkdAnAUfTspobmgHTegDaAhHQKfubsXzlLh1fZQoaAZHQJta4SvkilloB03oA2gIR0Cn9Vm7z06HdX2UKGgGR0CdI6xgRbr1aAdN6ANoCEdAp/WpDArQPnV9lChoBkdAnFtdE9dNWWgHTegDaAhHQKf4gvIwM6R1fZQoaAZHQJ4ThSUC7shoB03oA2gIR0Cn+7CB5HEudX2UKGgGR0CaCsg7o0Q9aAdN6ANoCEdAqAH0SM98qnV9lChoBkdAmdBF6E8JU2gHTegDaAhHQKgCSdzXBgx1fZQoaAZHQJl4/Qw9JSRoB03oA2gIR0CoBLKv3ai9dX2UKGgGR0Cbf1wD/2kBaAdN6ANoCEdAqAdFuaWonHV9lChoBkdAnRQwjdHlO2gHTegDaAhHQKgNkTi83/B1fZQoaAZHQJ1Zm2c8TzxoB03oA2gIR0CoDeXzMA3ldX2UKGgGR0Cb/xLHMlkZaAdN6ANoCEdAqBArQ/oq1HV9lChoBkdAnMJU2cawU2gHTegDaAhHQKgSy/bj94x1fZQoaAZHQJnQPqKP4mFoB03oA2gIR0CoGOMLWqcWdX2UKGgGR0CF9YGJvYOEaAdN6ANoCEdAqBkwJw84gnV9lChoBkdAmdrq3mV7hWgHTegDaAhHQKgbTIDoyKx1fZQoaAZHQJx9BKRMewNoB03oA2gIR0CoHdWrwOOKdX2UKGgGR0CcLNrqMWGiaAdN6ANoCEdAqCNdBlcyFnV9lChoBkdAmiQXxnWat2gHTegDaAhHQKgjqdiDujR1fZQoaAZHQJkirmjj7yhoB03oA2gIR0CoJdmz8gp0dX2UKGgGR0CccMfjS5RTaAdN6ANoCEdAqChHNA1NxnV9lChoBkdAmf1cAq/dqWgHTegDaAhHQKgt43BHkLh1fZQoaAZHQJrE609hZyNoB03oA2gIR0CoLi770nPWdX2UKGgGR0CZjNvDP4VRaAdN6ANoCEdAqDBH7JnxrnV9lChoBkdAnOVwj6eoUGgHTegDaAhHQKgyuoZydWh1fZQoaAZHQJq7sTdtVJdoB03oA2gIR0CoOKRkd3jddX2UKGgGR0CXdyvKlpGnaAdN6ANoCEdAqDjvymQ8wHV9lChoBkdAmOfqNMoMKGgHTegDaAhHQKg7Mw4bS7Z1fZQoaAZHQJwz7/vOQhhoB03oA2gIR0CoPbVuaWondX2UKGgGR0CYushcqvvCaAdN6ANoCEdAqENIl8gIQnV9lChoBkdAkXlTD4xk/mgHTegDaAhHQKhDk/Dcdo51fZQoaAZHQJgzsPiDM/1oB03oA2gIR0CoRa5eRgZ1dX2UKGgGR0CZmvftQbdaaAdN6ANoCEdAqEg8VFhG6XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7197b96ae6e066c9bae589555b4954b07c20951f36a28e4b298ce152ed089e
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3aea9f626f387b6ae9d689116da52b9999510ddea0f6b622d03307804c24ae3
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.9.13
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.5
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f71a2da5ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f71a2da5d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f71a2da5dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f71a2da5e50>", "_build": "<function ActorCriticPolicy._build at 0x7f71a2da5ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f71a2da5f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f71a2da3040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f71a2da30d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f71a2da3160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f71a2da31f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f71a2da3280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f71a2da3310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f71a2da80c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679158611030192007, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFMvaG9tZS9zYWNoYS9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUy9ob21lL3NhY2hhL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAc+Gj86i7m96CsSP4Tdbz/X/ao/qHKbP5+wVD+cDU6/n+4NPqi6lD761r8/1qexv+GtOr+niJ4/8p9kv+sMZj1WZ3a/XR/bPsPDPT/q62U8/xBaP/fHQb/ZJ40/sODbPopri79s6fQ+P2y5PtW7HT9xo58/Y04bvwW1JD9lBPo/+l3SP2D0nD9/UHM/SmyRvzNf/r3eBN++rpEVPWOfsr/ZZBs/nRA9P9Njv75Qp4A/hBdiv/nZzL7qPz0//w/BPPWEmL5CNei/SB64PzQTPj6Ka4u/bOn0Pj9suT7Vux0/82sSP+0KjD6R3sg+vBxoP2q/HL+2djnAwM9Nvof7z74emti+kB6jP7+gkj/jk5M+kcMGvyVP9L8m3mc/Ks8Vv9jIxb8Sack9aCJVvV7Wgj4Sz8U/W0V4QJVNVT+Ljl+/imuLv4vLBcA/bLk+Fb7Pv6wDiD/UXG8+FLDVPvoYBj/241C9EcD8vyXXmj2/JXC/x6s/vwEnG76Qqp4/1sadP7Di+b7Z9sq/zKDGPrIc1T85WMS/LIaQv5qOhT53POy/FF3TvqYrHEDuP60/s2Davopri7+LywXAP2y5PhW+z7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADBb6W2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwM8EPAAAAADX5vC/AAAAAG14DL4AAAAAYMDdPwAAAADQMOw8AAAAAGJh6D8AAAAArCzMPQAAAABsiOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqKXtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMpDEj4AAAAAaWjxvwAAAADeN+A9AAAAALaJ8T8AAAAALNMMvgAAAACrSvc/AAAAACv9+70AAAAAJGLxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH33EjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA28O+9AAAAAAg63r8AAAAAffYMPgAAAADwsPw/AAAAAA89Vz0AAAAAYYbzPwAAAABQPXa9AAAAAPIWAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPznS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/cTwPQAAAABqsvq/AAAAAOe9k70AAAAA6zjoPwAAAABF1k69AAAAAN0x7z8AAAAAdKehvQAAAAAHz/O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJorNjx0+1WMAWyUTegDjAF0lEdApx8KF23az3V9lChoBkdAml+fOyE+PmgHTegDaAhHQKcfX1q33Ht1fZQoaAZHQJr5F72L5yloB03oA2gIR0CnIbhG6PKddX2UKGgGR0CYkFAMUh3aaAdN6ANoCEdApyR1ZDArQXV9lChoBkdAmAlPW6K+BmgHTegDaAhHQKcquCaqjrR1fZQoaAZHQJWPUZVGTcJoB03oA2gIR0CnKxb48EFGdX2UKGgGR0CWSBGQSzw+aAdN6ANoCEdApy1TI/7iynV9lChoBkdAl1f8ENe+mGgHTegDaAhHQKcwAoBJZnt1fZQoaAZHQJZ1rq+rU9ZoB03oA2gIR0CnNzfOt4iYdX2UKGgGR0CXh2/Aj6eoaAdN6ANoCEdApzeMhC+lCXV9lChoBkdAmX7hQzk6tGgHTegDaAhHQKc6RTJhfBx1fZQoaAZHQJkzmwD/2kBoB03oA2gIR0CnPRwjt5UtdX2UKGgGR0CUf0ePJaJRaAdN6ANoCEdAp0TjoyKvV3V9lChoBkdAlvkiiudPL2gHTegDaAhHQKdFNSgGr0d1fZQoaAZHQJbhgm4RVZNoB03oA2gIR0CnR6gdOqNqdX2UKGgGR0CVNhvM8ox6aAdN6ANoCEdAp0pPdRBNVXV9lChoBkdAmWUOfZmI02gHTegDaAhHQKdQLHlwLmZ1fZQoaAZHQJeR/8ZUDMhoB03oA2gIR0CnUKdsBQvYdX2UKGgGR0CVWIJ4jbBXaAdN6ANoCEdAp1N4f+0gKXV9lChoBkdAmws+sHSncmgHTegDaAhHQKdWYU34sVd1fZQoaAZHQJ42HPyCnP5oB03oA2gIR0CnXp3cYZVGdX2UKGgGR0Ca+COSGJvYaAdN6ANoCEdAp18baPCEYnV9lChoBkdAmuAFjurp7mgHTegDaAhHQKdjcWJJoTR1fZQoaAZHQJufPUwztTloB03oA2gIR0CnZ2/F72L6dX2UKGgGR0CZSM2/zreJaAdN6ANoCEdAp27AlpoK2XV9lChoBkdAmcfTABT4tmgHTegDaAhHQKdvDHR1HON1fZQoaAZHQJiPIxnFo+RoB03oA2gIR0CncS4kVvdedX2UKGgGR0CZIQr8BMi9aAdN6ANoCEdAp3OlqSHM2XV9lChoBkdAmZYArQPZqWgHTegDaAhHQKd50ji4rjJ1fZQoaAZHQJnxZb2USqVoB03oA2gIR0Cneic9nscAdX2UKGgGR0CbeF2+fywwaAdN6ANoCEdAp3y8FEAo5XV9lChoBkdAm59zguRLb2gHTegDaAhHQKd/elhw2l51fZQoaAZHQJqorHuJDVpoB03oA2gIR0CnhcvE87p3dX2UKGgGR0Cc+MQN0/4ZaAdN6ANoCEdAp4YkBjnV5XV9lChoBkdAmwzLr5ZbIWgHTegDaAhHQKeIn+I/JNl1fZQoaAZHQJ1z+kM1CPZoB03oA2gIR0CnjS5PM0P6dX2UKGgGR0Cbxf2fTTfBaAdN6ANoCEdAp5UdtfoicHV9lChoBkdAna5LZrYXf2gHTegDaAhHQKeVeXvYvnN1fZQoaAZHQJpZdUrCm/FoB03oA2gIR0CnmMXwb2lEdX2UKGgGR0Ca9sNt65XmaAdN6ANoCEdAp5wjsIE8rHV9lChoBkdAmeiDPKMefmgHTegDaAhHQKeimsUZeiV1fZQoaAZHQJvbzoX9BKNoB03oA2gIR0CnovpZGKAKdX2UKGgGR0CeFwRsuWa+aAdN6ANoCEdAp6WJZjhDPXV9lChoBkdAm5jkORT0hGgHTegDaAhHQKepEgf2bod1fZQoaAZHQJvQtTefqX5oB03oA2gIR0CnsapNj9XLdX2UKGgGR0CbsmSRr8BNaAdN6ANoCEdAp7H9r433pXV9lChoBkdAmmsOWGATZmgHTegDaAhHQKe0Ow5eZ5R1fZQoaAZHQJtbSiWVu79oB03oA2gIR0CnttFP8AJcdX2UKGgGR0CVhTRBNVR2aAdN6ANoCEdAp70ylnAZbnV9lChoBkdAmBQhRhttRGgHTegDaAhHQKe9gSoOx0N1fZQoaAZHQJoak5n13+xoB03oA2gIR0Cnv9Y4p+c6dX2UKGgGR0CY+tujynUEaAdN6ANoCEdAp8JhMSK3u3V9lChoBkdAl5ima6STyWgHTegDaAhHQKfIJ1RtP551fZQoaAZHQJnJEbrC3w1oB03oA2gIR0CnyHWnTAnEdX2UKGgGR0Ca5bqDsdDIaAdN6ANoCEdAp8qgfMfRu3V9lChoBkdAmYWyUC7sfWgHTegDaAhHQKfNJaTwDvF1fZQoaAZHQJp0rpljEvVoB03oA2gIR0Cn03E6tDD1dX2UKGgGR0CYnKkleF+NaAdN6ANoCEdAp9O8sQNCq3V9lChoBkdAmzpYyTINmWgHTegDaAhHQKfV1yq+8Gt1fZQoaAZHQJt3HQnhKlJoB03oA2gIR0Cn2F2KdhAodX2UKGgGR0CZRLPci4axaAdN6ANoCEdAp94FVxS5y3V9lChoBkdAnLX3XqZ+hGgHTegDaAhHQKfeU00FbFF1fZQoaAZHQJoTDLt/nW9oB03oA2gIR0Cn4HrSeAd5dX2UKGgGR0CbFI0zTF2naAdN6ANoCEdAp+L4rFwT/XV9lChoBkdAms+4VmBe5WgHTegDaAhHQKfpRvCuU2V1fZQoaAZHQJqkgVJtix5oB03oA2gIR0Cn6aLk0aZQdX2UKGgGR0Ca9qBPsRg7aAdN6ANoCEdAp+vatvGZNXV9lChoBkdAnAUfTspobmgHTegDaAhHQKfubsXzlLh1fZQoaAZHQJta4SvkilloB03oA2gIR0Cn9Vm7z06HdX2UKGgGR0CdI6xgRbr1aAdN6ANoCEdAp/WpDArQPnV9lChoBkdAnFtdE9dNWWgHTegDaAhHQKf4gvIwM6R1fZQoaAZHQJ4ThSUC7shoB03oA2gIR0Cn+7CB5HEudX2UKGgGR0CaCsg7o0Q9aAdN6ANoCEdAqAH0SM98qnV9lChoBkdAmdBF6E8JU2gHTegDaAhHQKgCSdzXBgx1fZQoaAZHQJl4/Qw9JSRoB03oA2gIR0CoBLKv3ai9dX2UKGgGR0Cbf1wD/2kBaAdN6ANoCEdAqAdFuaWonHV9lChoBkdAnRQwjdHlO2gHTegDaAhHQKgNkTi83/B1fZQoaAZHQJ1Zm2c8TzxoB03oA2gIR0CoDeXzMA3ldX2UKGgGR0Cb/xLHMlkZaAdN6ANoCEdAqBArQ/oq1HV9lChoBkdAnMJU2cawU2gHTegDaAhHQKgSy/bj94x1fZQoaAZHQJnQPqKP4mFoB03oA2gIR0CoGOMLWqcWdX2UKGgGR0CF9YGJvYOEaAdN6ANoCEdAqBkwJw84gnV9lChoBkdAmdrq3mV7hWgHTegDaAhHQKgbTIDoyKx1fZQoaAZHQJx9BKRMewNoB03oA2gIR0CoHdWrwOOKdX2UKGgGR0CcLNrqMWGiaAdN6ANoCEdAqCNdBlcyFnV9lChoBkdAmiQXxnWat2gHTegDaAhHQKgjqdiDujR1fZQoaAZHQJkirmjj7yhoB03oA2gIR0CoJdmz8gp0dX2UKGgGR0CccMfjS5RTaAdN6ANoCEdAqChHNA1NxnV9lChoBkdAmf1cAq/dqWgHTegDaAhHQKgt43BHkLh1fZQoaAZHQJrE609hZyNoB03oA2gIR0CoLi770nPWdX2UKGgGR0CZjNvDP4VRaAdN6ANoCEdAqDBH7JnxrnV9lChoBkdAnOVwj6eoUGgHTegDaAhHQKgyuoZydWh1fZQoaAZHQJq7sTdtVJdoB03oA2gIR0CoOKRkd3jddX2UKGgGR0CXdyvKlpGnaAdN6ANoCEdAqDjvymQ8wHV9lChoBkdAmOfqNMoMKGgHTegDaAhHQKg7Mw4bS7Z1fZQoaAZHQJwz7/vOQhhoB03oA2gIR0CoPbVuaWondX2UKGgGR0CYushcqvvCaAdN6ANoCEdAqENIl8gIQnV9lChoBkdAkXlTD4xk/mgHTegDaAhHQKhDk/Dcdo51fZQoaAZHQJgzsPiDM/1oB03oA2gIR0CoRa5eRgZ1dX2UKGgGR0CZmvftQbdaaAdN6ANoCEdAqEg8VFhG6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1719.8105784040877, "std_reward": 66.95799593479157, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T18:48:08.169567"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3016b6b6dd54e0fa5dbd74e6b96c1803558ba6c028470807003a0bb81524a5c
3
+ size 2136