sachaguer commited on
Commit
308b8f0
1 Parent(s): 85783f7

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.92 +/- 38.40
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f01198914c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0119891550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f01198915e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0119891670>", "_build": "<function ActorCriticPolicy._build at 0x7f0119891700>", "forward": "<function ActorCriticPolicy.forward at 0x7f0119891790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0119891820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f01198918b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0119891940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f01198919d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0119891a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0119891af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0119e29600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMlbw4vA1iiCWsi85kwmcepYJVX0XmPA7F3y7lGkts1JbOVuxx1+beHWYZ2N3vA6oy9nVgXEBEc+LCMkZcL49Z0wAOf4mLNDsiGULNdj3iqZDV4xyero+akH/njWhpkHvzjSwARU+ZyF1QSnzzDmBixIjgFomNGiKGxKeGz+Ayf9+w8XbwNOkzBZfpkjfC7nZkOgQyxq6sUDhOHGJvN5wNQNG1j5aTn3JqF6W9SbO0ZmUpS24dvT/VKLTiPsYHsw7L2JZhV0w+kh94WL19bFnzin0RM1b2LK41Jawo6eIdsdbPNNGAF+UR1svM9s5Ly8oqK3CLclgPwbH1+Pl5fiDZS2E9a2WvwSpDQHsuI5ZGD2+nDByHSawoDmbx8rzO229zDOKv4XBmAg6gKDiOP4WtP12WG7gzuXbkz99rGys0FkS6ooKyPFBPc8nRlO0rUBP5Yp2ulAWMSyBXRcQvKYT6XJdwQHNmXrUG1f9MBDodd4JIBnXcFYXQpIsIawp8ah93zbcV4ykTZUA35hKdf1xdxo46ES0TkCgCTD0bJLNW+kU0S60OgAwINaaCKEx9oT9QrC5O/3KayRrBzEmmqpZYyq84Uk9jwTcPUVrFWPu2/h0OS+ZHXvWtp6m4AZGu7Lu3RbQs5XTj7Nh+CGfqdxzAVxTDnCisazKWqY4FgMnN3aCEYhRTYf0NGfj02PftywhIt5h6F2TKtp0IKluw54mM8YQcjdeQ6+X0EMLc4QC+3de0Br+tsybllJEvr3LOgIBynjYgjHt1EVyoW/3cO+FZa0bRog8PN6Cbicr4EHSzuFRkYpIZaUX9MsTQSH9TiKdXCBqlJVPFiNzWLfoPCMx4DU9Hn8+5TzV367zm7ioU7tRuacYixpdA8W4pJi9XYMaOC1pqVs4izmtx1wjUMT7t96PFP+gx1o8vZPqa6pCWxVQdw6cZfdKlhlbbFJedQAgxHKij6xX+SLi2qd5/N1asuj/nczcjV6AC5keZeB49mk88TeKlXiYhAv0rPHsgvF185+HAn0+9P1p+KKUcN9PvABZYRbNMZFXzVvl1zfqrhQZ8EDkUxwARUY9j4KT2WoKS/FFfyAuq379CjGEVJD9miHol1+R7xuqskaewAZP/l1c5j2bsZ0G0UTVGryR0IB3GHUb+KO9dKcq89/08vebKN3E0wpVkftE9b9IgK+gQK75gJeTi8U20EpSSuL1gpIt1mIvqMURcme8iiwdt4eZqveY7qvtmIhXyTVndNGxnJrucX5612de8c4P2nQRdGcX7ezpbG1ORBFZLTXa/sG0e/b0Ts/tq9RWEpfKcDU8ql8Bz/nnDFKyxMaFSVpK0jysdBscYMd4/p75Bl6W1s1qU6ucZqbKDvu3PBotPH6fvV532DbPx24uuDfXVQPmDqVe/tzGreNgp7brEi1OvnYdoYvd+SBkRFeRHNSL/Aho/4MQCH4Rtou0MmMNMNF7aKu66ByQjCTSQnE29DYLq1OHfVnIh19cagZYXHLCcIgb/erTLBZbR4fDtx5s2Nl/YNtHuSKyb+2i1Uy/geCmmfqmTGeGyW3FbAhdY1Vx1uL1jmr4/brEHaARs+ZpZqEb5alwE5Q5A6c25HHoIIMB/QMa5Gnxc3KCqHaP4BmWZuPo03RX/D45kY7YqS/cODi8LfolizaiylKR+n63Va5zsYzP6O2RK+vbTg7eg30LUjQtFrbt02FTI6oBIt4f6S9tbz7EWhWYoB6/IZSe0h6zfB8XIM6uv+HjgnT35+nX2rAwO0gxH0mgoC1O8w9HqxzYkESYltWJi30e1rSFHTh8w+o5H1Ilq8KxMcYHjDIds2aMZrGMk4bftMFfFgjtaDE0QDF/bvPRWs+TeDrJ2zIawwc5Fx6bqlb89LCJv5r5U3lI8ESwIT9fVnwJOMUtthnaIAj/RNlObiQYlHVUTAW1Jbx3sr0RuBpgoiVRgH9b5J1rCFSe2JBJ/puLbSAmJGbi7GuhQsbmK1RTMMYPmV9c8XWf/jVKaH2bQahT3xpEIrCU0Lo0Ph4PgMUonOUJtZqAjAe0dAK9R9tNtuX8xNSekGANuKonDi882yawuMsVG7ASugHphA6uFIkB85D2DhNXqvrLGuE4MqTer+fegeBIEfoLC7mHhZ9yLVrtA2YxEfBhljntyerEAhbwslHjci3hC/TGUB2/1Aak1dUWFPjuti2ZutvJfXR+h/EAo0Cygdl06xnPuuVg8jUhQAZN9Q2vqf+kmFfypmdnxmk9QbIGAG/Wmb3Q+sjKpxcKfu1YjCH9MzZn7t/XNL/nsyxB2gvek10Z/WHMCRhv7EDnKTPzpUk1dmtj2Z8+xzTZWRRFgl4ixVS1XVrrO9208WnSMwY5lrwf3Su5KmlpMw4V6xBQ6BFuqwrwdwe6HiIDVRR5q+dPHxPax1FP0uZMqcccjZ33rlBG5z+2qzsBYM2qzcCznoPYfSRG8xUcoHlFiHiV9BZNdQAiMpGJMkuMVVkh9SY3rTDn1ULRSmoIXL4GC8mSufHaRFUY9SmKXM8Gmgg36s9MXzNysXauIQ8fdGpkZsY4YifLEbmJ3XIpdRjxvAlrElDrotwu+Pa9gHPDeWAMtWdEPlGiVYmQUsRDCGyDSTZfzxUPvlIQemzCyMWoaVWWcq7m1bXT9QgkeKNIU5pRzUX489/YJ1OawREHgS1iwvTBJp/sedfdNGdEXifoBd3tO03EEvIDV9pcNUjBag8cJ3oenTzF0JVClQ5I5VC/HW2JgTxBn/VAH0yZnrv1NWM6vCgeYJfS1ciRI3ZZ35bX/JgaRtHksncRVG6FVSwl+lSzmu+7462Jv2TDfdu2p+lMvLpPtKSbl3hWy9VwRQCFIcF5L43WkurnqrEmwOjzpavGa1VWajrNczQwCbDlYY1fdviTGQFSgC4TxCiFqKd0BVKDFhJ/my/WuDlz+Cy64WPCUtYYCej01ehRDJyzX9wmbQIfmGEG+OxOGA75jJ/q5/eGSXINGwCQZDsFI/MY1Ag+pAHMC3WdmnZdI07VuMx+ApQ1Wl4cIpI4MRQ9qUQ6Z1qls1h6E4JyKbZFMOOpzxFAcVWXZVQ5wDS8Z5ZJABkB/phTYZI/E0f1DRXcnrag+neH94vO365rtMsUBmA7S7SWqFNuq89KjpsOHsXbtrCZz6PAi4AIrnGkVqAnyXKMZkUifxzGultjitqvz3SGeKurDT3LN7XFPBYhTj2gtaR8b6jEXXXGCxNty84FbxA8kymAbHMlwvPsG3d+eOb/AU0kaJu+HRZVJvH9Ut12KtJiHq7tYNhviYmgMiOJY/pU9aZX+cf0olsIbJBGnOdCCQWUJkJVpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAIJG8nycaRYGQFRaTwD0SIljmtZfClbDi2Oh4XeRUIj/Ji6SHxDrWhsRYi9empfi7TgMvkoZiTSktSLRrDRRaa+s9Co5WNb3XVEmetbhw/g5OPQKDBOFyFCOOUquwefGfipfmeUptvjRp2vC0SN46/gN6F7jSuf3E+S1pYt7lGlBL/ozOZdsmDvH+7EW+Yv3/FkI/614HwsfpGgmPj/jQ137Z3LeEHnpOnBNHQUA5faacnPsLspU5CDKCIarhuzHb126Jhbp78MIcMIahA/1nYnnz625i5FKAZCbWmWVvSnSbj7iDY9D2rV5izq8Xhy08YwmXoPhj2c8ChNOysvACvKkySZCOrGfj+K5946/0vGp0PbVJnekAKBwwW+7XPhiGbfWfKEFJ0rLTfMR+ucwP5xNq4HVYdeXTNUwn7tBrRmqp2W64g4Qx6rEuaB7JmbEFs1hrDDHOlawhhuofwVxIRg95T7NoI3iIXgQc5GFMSxecPnRgri2RiTb7OZ/RwmLQlgLECdeIF8JI+vmBHz4xnsb0NChIW1L2+uLpYrMN/8j5CFAJUJywBY82+z4YjzW3fqJLmkyKHEh/GA5Y1D99++C+CIFeoSJCflcYdJPaxJskCR3qYD8mRaidFKraigmCC4AlXr2bscu/u88vlBaOTf9XrrTXsDeiJsBPrKwMhc8syzvhJxW6HeFJR7MImAMHPPo9Px2rn4p9fmWit1LAgKtq1B7+3bmJsNN6FN+IBSZ9Wdhj+ctrIAst2NdNg3ccvbOus4shcf9X25QQfgQ8PkZw1U/TOVxgnxDE+kTheGQl6fDbhq3Df9ssgPcIGadYXPnLgjdjiwapbT4QpWMAMSwXD4l7eK15ryJ/MnxsFfh0ts+2vuncwtR2E3SUTu7+Frt3bd0d+kLiFWLn2uQS1PNat8+gWT/UmEHGcGqr51Jk1ouK+Wu+cpeLOXZiIAqN6Qm/BvUwQS95XzFPQ/OOXtUoGssrjakrOTq83InoQiJ72IfG/mLTEVG+ChsQsd6/hMfEFBjqDMDcx0tuS9YcTPIO208B2tzWf1K0kqqzI39XyOeta6f378A7otVWODP05pTTAopSOOcyAn8/F690Rflf24Qry2ZW6bKpLrgior3HHyADUD5a2HOSWhsSSu8/d/kjbNvH8yI8dvg1PBLwXs3wb6nBhtqs1sbXRoNOBVI9vFeJW2rzFf9m8rDV+PPM+NA0aSG2Vn5ass0nFNCESga+FNoWxKzAdRXNyOv5nx3FJsM+LOvqGFySkGGDJieUb2Ym47lA3uPP2s0Nzh+0FR6vmMF2xL9fDuHIbu0RVDBthH0EZ/cPNVZp3GSMJos27KTpH/TXOJVvEkt184tk4q2+v4vM8sEwBwu2Nbig7fPtv7zj8hNe0lvBAtV3ysKtwnUKgECriW85L4sxn+C6Ft5bFbF/JlgEX8rfzMH7PoLngIrMCgfDzuLA3mMJGDZvMCiR7Wztq3YBFCp0QLDec5xTywnPv2oZA9ymp0wcjCymjSE3iSQ+Ax89ZmCgFv3Z2+oO69IZB2KdqdDDn2EWk5Fpcb90MHJpE4OYYHqBajrIF0KK0IGRxY9T4q2a/vGSfNDvAkkXP8HMMgTES9FYEmDPvT9iTO5qDen1vvshdqVxRk4btJSqAq4693gkQIpjuRNM+F7NRmmbEfHnRI0KNGuFpaRxD8G3wn+XJKWWmIIXXqvrqHZxMQpe86bETY175YeyZXj8v47waI5j1VmcmebIKFMVUohJpA1gjZ6XIEFlOhID/CrxgBS77FMSVQrLL2Gx22ufWq7Xgv908rqjXOfJXapNB5enH2dSezG1j7Qr8cLbJr+OL6oFhxEY/6jUhrCYq9fdpI6pQ3+w4O/r+nvLFpInI8QoNlQeCBWtqiBbqmJFgigpd8BR3BcYVnTAdEPk6ST83ttZCqRkUlrWNCFrgmP7ASqKBvndjp3QhGvaMtWvAnNFS65KmvbshHBzMxJs+2MXIdOJhoZBbF1KbeFbv9aZkncIXa+mpl1Mr1SP08Hwhhz59JHKD5qK8NjLBHTsfc4/IaK2Fh7oru6iEKb3mrWH4bzzXtXHBHqK4v19WmID5QqpFeYhrijvTuX3TNCj80OtcwJdKiSHy9UdqFnsF1wHGps761wadYgv3wdap4e0RRALLlUTu3Ifmjsc5NG3KQocXEVvEp6DGOtKB4VgPDtpb/dnTGDB5RjP7HtZAj7sX1pT5GrhcYkhfpcyrsPCYK0c2QXv7v2aPHz9T6cjk2P+qU0PXzcgJ4VNvYQqHw/Lu2Zx2Q3G4bEejghrBxPwe6mUEOlGxPg2Hxu3zjXOM99R3Xts9U/KRG1ACotV52jya+tnMdYAvNtI21rj//9Jnli4gLab7YfMWCf84MQI1PlN18tQuxUM5B6T4r1UJlkMVb5ADkU1wgprJnY7QAD2R4bnLU3kQrwsJqZ6BMmB5y9YnxNv+rAsj40ShGEPMLPYGUOMI4uRkhKzRWTTT8azGx6WM+uZgFZdHLNz63JUM0TH/Fkq/ndMOXT/GY+F1WfAD519HlfH5JR4H3HX6E730Pr1tgNnauv6M5dxv8FzoN5s6O2jPYLXZQ3383+EjWb31jtbHjjDEJI2CmwDfK7srAVfoSQAMVidunfoweAoDPPRF7x1e0Fss4+fdsRZrnKfWqwd45IMPsghimJD0XXlj1L201Vu6dllpDsPWqFyA01DL8OaqTsw7Ms8M9GpVnTaj3mUn9YsOqdrssJA/mGLXms9X8Eg+iu4rLTDg+qmcx4D5bd1CW9FFHvgZYa30ECmiDk7JTxq9a1l9Vsfs7MsjJIRF1bycGgvnb/zECEKJsCcw84Mb4hl9Myb6P0+6beF2bTEM4P82IYnDk7LfphEhvkCTIoVveSxIHEX4CmemWq76CNZjHkaHcOL3puWyILHM1QGO8/bRBFNp2q/X6Vz1xbV3J0BChjTTf9aMB/EHG/a4Iw74UukrnJdSZooaZ9FtvJPwH7rf1mPBCd2V9/u3lfNxQ5m/bgo9tls9xWGo8eVwnsUb3bcv0aoCSVLJhNpvVFilZ9fTBhEyyVVKel/KOJr4BGHGtpYwNAy5HDswW7Ud7N66/fmxFJRS2l2s5z8FemBHtvlB7a0GnmoKHuTS1EX+eujuDLbqTCbva9jrFY27s+sEd5GpOR+zgZKvvy9RaRJMzPR4vcO2f7paK/7r93Ry9lcyzAINanCJzzwiTULTazxSNx9zH4pV5o+MpFX1fL3ie7pDvEfIKlbFZ6znsakEEgB9DM8vdxXW+XtSZJpaWWPNvk8qbeU1i0uVlrFYIrdcVNkIkfcmH38lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678721429920815311, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAI2Ysj3shMY+UnvAvdUug74TIce8JDQBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6IcRwmOhcUCUhpRSlIwBbJRNFgGMAXSUR0Cg5MBe5WildX2UKGgGaAloD0MI+BdBY+Y7cECUhpRSlGgVTS4BaBZHQKDmW5CF9KF1fZQoaAZoCWgPQwh0le6us/dqQJSGlFKUaBVNWAFoFkdAoOdwqTbFj3V9lChoBmgJaA9DCH/5ZMXwxm9AlIaUUpRoFU02AWgWR0Cg6FZnctXgdX2UKGgGaAloD0MIG2ZoPBEWR0CUhpRSlGgVTREBaBZHQKDpGywfQrt1fZQoaAZoCWgPQwhOnNzvUNQcQJSGlFKUaBVL6WgWR0Cg6mdM0xdqdX2UKGgGaAloD0MIYK5FC9DFcECUhpRSlGgVTTcBaBZHQKDrTgnc+JR1fZQoaAZoCWgPQwgWTPxRVM1tQJSGlFKUaBVNRwFoFkdAoOxAbGWD6HV9lChoBmgJaA9DCDRKl/4lKHBAlIaUUpRoFU1AAWgWR0Cg7eX7cfvGdX2UKGgGaAloD0MIza57KxIeb0CUhpRSlGgVTVoBaBZHQKDu9IiC8OF1fZQoaAZoCWgPQwjgDz//PRQzQJSGlFKUaBVNAwFoFkdAoO+nCj1wpHV9lChoBmgJaA9DCBJpG3+iVGRAlIaUUpRoFU3oA2gWR0Cg9SEIX0oSdX2UKGgGaAloD0MIPIcyVEXWbUCUhpRSlGgVTVcBaBZHQKD3por4Fid1fZQoaAZoCWgPQwgjTbwDPAhrQJSGlFKUaBVNRwFoFkdAoPj/JV81GnV9lChoBmgJaA9DCFImNbSBbm9AlIaUUpRoFU1JAWgWR0Cg+gWQGOdYdX2UKGgGaAloD0MIiZl9HqPncUCUhpRSlGgVTUcBaBZHQKD6/GiHqNZ1fZQoaAZoCWgPQwhaSwFpf99wQJSGlFKUaBVNMgFoFkdAoPyRnezlcXV9lChoBmgJaA9DCAoTRrOyyF1AlIaUUpRoFU3oA2gWR0ChAHl7D2rXdX2UKGgGaAloD0MITpzc79BYbUCUhpRSlGgVTU0BaBZHQKEBeHgP3BZ1fZQoaAZoCWgPQwgXZqGdk4pwQJSGlFKUaBVNYgFoFkdAoQKQG6f8M3V9lChoBmgJaA9DCJ8gsd39MXBAlIaUUpRoFU0xAWgWR0ChBCfaHsTndX2UKGgGaAloD0MIDkktlEz5WUCUhpRSlGgVTegDaBZHQKEIo4ffXPJ1fZQoaAZoCWgPQwiygt+GGCBxQJSGlFKUaBVNYAFoFkdAoQnFwtJ4B3V9lChoBmgJaA9DCKMfDaeMd3BAlIaUUpRoFU0lAWgWR0ChCpXr+o9+dX2UKGgGaAloD0MIz9kCQuvbcECUhpRSlGgVTU8BaBZHQKEMLl18stl1fZQoaAZoCWgPQwhzg6EOqyptQJSGlFKUaBVNFgFoFkdAoQ0D+PzWgHV9lChoBmgJaA9DCAosgCkDlz5AlIaUUpRoFUv2aBZHQKEN8kJKJ2t1fZQoaAZoCWgPQwjjFvNzA0NxQJSGlFKUaBVNSQFoFkdAoRArdepn6HV9lChoBmgJaA9DCEw1s5YCJm1AlIaUUpRoFU0yAWgWR0ChEXIOQQtjdX2UKGgGaAloD0MIxM4UOi+WbkCUhpRSlGgVTUsBaBZHQKES5HtF8Xx1fZQoaAZoCWgPQwidDmQ9talsQJSGlFKUaBVNJwFoFkdAoRQwHoouw3V9lChoBmgJaA9DCMLCSZq/02BAlIaUUpRoFU3oA2gWR0ChGMYs3AEddX2UKGgGaAloD0MIR+UmamnNcUCUhpRSlGgVTT0BaBZHQKEaVSVGCqZ1fZQoaAZoCWgPQwjH2t/ZnoduQJSGlFKUaBVNOgFoFkdAoRtFUjs2N3V9lChoBmgJaA9DCLNfd7pzWXBAlIaUUpRoFU1OAWgWR0ChHDZqubI+dX2UKGgGaAloD0MIR60wfW+tcECUhpRSlGgVTVYBaBZHQKEd44T9KmN1fZQoaAZoCWgPQwiaet0isJpuQJSGlFKUaBVNYwFoFkdAoR7+ZCv5g3V9lChoBmgJaA9DCGrcm9+wH3BAlIaUUpRoFU07AWgWR0ChH/U8FINFdX2UKGgGaAloD0MI88ZJYZ7EcECUhpRSlGgVTTkBaBZHQKEhgSgXdj51fZQoaAZoCWgPQwjRQCybuTdwQJSGlFKUaBVNNgFoFkdAoSJ+/nGKh3V9lChoBmgJaA9DCDMWTWenK3BAlIaUUpRoFU1HAWgWR0ChI4NCiRGMdX2UKGgGaAloD0MIeJeL+E5ScECUhpRSlGgVTTEBaBZHQKElFqEeyRl1fZQoaAZoCWgPQwi9Nhsr8SVxQJSGlFKUaBVNNQFoFkdAoSX3UKArhHV9lChoBmgJaA9DCHkj88if6XBAlIaUUpRoFU3SAWgWR0ChJ1MijcmCdX2UKGgGaAloD0MIVfZdEXz8bkCUhpRSlGgVTT8BaBZHQKEo9rJr+Hd1fZQoaAZoCWgPQwiy8stgjEhsQJSGlFKUaBVNZQFoFkdAoSo8tyxRmHV9lChoBmgJaA9DCHukwW3tLHBAlIaUUpRoFU1DAWgWR0ChK5ZtNzsAdX2UKGgGaAloD0MIngsjvSgGbUCUhpRSlGgVTVUBaBZHQKEt23sHB1t1fZQoaAZoCWgPQwj8cJAQ5UxwQJSGlFKUaBVNKwFoFkdAoS9BYPoV23V9lChoBmgJaA9DCFfRH5p5HjFAlIaUUpRoFU0DAWgWR0ChMFl8gIQfdX2UKGgGaAloD0MIdELooIskcECUhpRSlGgVTTEBaBZHQKExt1p0wJx1fZQoaAZoCWgPQwj27LlMzV1wQJSGlFKUaBVNagFoFkdAoTPMHY6GQHV9lChoBmgJaA9DCFkV4SajCXFAlIaUUpRoFU0dAWgWR0ChNJycslLOdX2UKGgGaAloD0MI304iwj8XcECUhpRSlGgVTSoBaBZHQKE1fqqwQlN1fZQoaAZoCWgPQwjKiXYV0rRsQJSGlFKUaBVNPgFoFkdAoTcfq1PWQXV9lChoBmgJaA9DCCY1tAHYbDxAlIaUUpRoFUv3aBZHQKE32qzZ6D51fZQoaAZoCWgPQwjF5A0wc6RvQJSGlFKUaBVNTwFoFkdAoTjtZzPrwHV9lChoBmgJaA9DCEyN0M/U/zBAlIaUUpRoFU0GAWgWR0ChOkWmxdIHdX2UKGgGaAloD0MIstmR6ruebkCUhpRSlGgVTTcBaBZHQKE7MkxASnN1fZQoaAZoCWgPQwhvLv62p1BtQJSGlFKUaBVNKgFoFkdAoTwZ8IAwPHV9lChoBmgJaA9DCAc/cQD9B2xAlIaUUpRoFU0xAWgWR0ChPQb+cYqHdX2UKGgGaAloD0MIamtEMA5RWECUhpRSlGgVTegDaBZHQKFBWbVjI7x1fZQoaAZoCWgPQwj6eyk8aEZgQJSGlFKUaBVN6ANoFkdAoUaaWiUPhHV9lChoBmgJaA9DCNpZ9E7FOnFAlIaUUpRoFU1VAWgWR0ChSVusT37DdX2UKGgGaAloD0MIJJf/kP4ycUCUhpRSlGgVTUoBaBZHQKFK8aOxSpB1fZQoaAZoCWgPQwjJ5xVPPXJvQJSGlFKUaBVNaQFoFkdAoUz5E6T4cnV9lChoBmgJaA9DCEPhs3XwNGtAlIaUUpRoFU1hAWgWR0ChT9aXrt3OdX2UKGgGaAloD0MILSY2H5f2cECUhpRSlGgVTU4BaBZHQKFRc/OdGy51fZQoaAZoCWgPQwhYjLrW3iRwQJSGlFKUaBVNdQFoFkdAoVM2eFtbcHV9lChoBmgJaA9DCIJvmj57nXBAlIaUUpRoFU1yAWgWR0ChVWTAN5MUdX2UKGgGaAloD0MId/NUh9z3bUCUhpRSlGgVTTABaBZHQKFWURLbpNd1fZQoaAZoCWgPQwhpOdBD7VhxQJSGlFKUaBVNegFoFkdAoVeDYh+vyXV9lChoBmgJaA9DCLxYGCKntW1AlIaUUpRoFU0zAWgWR0ChWRBESdvsdX2UKGgGaAloD0MIgosVNZgCbkCUhpRSlGgVTd8BaBZHQKFaljWkJrt1fZQoaAZoCWgPQwiJB5RNOahtQJSGlFKUaBVNRwFoFkdAoVw9CPZIx3V9lChoBmgJaA9DCH0DkxtF7W5AlIaUUpRoFU06AWgWR0ChXSdqcmShdX2UKGgGaAloD0MI1J0nnvNWcUCUhpRSlGgVTSYBaBZHQKFd/iNKh+R1fZQoaAZoCWgPQwjeHRmrDQZwQJSGlFKUaBVNbAFoFkdAoV8fSMLncXV9lChoBmgJaA9DCLzNGyeF3XJAlIaUUpRoFU0gAWgWR0ChYJWi+L3sdX2UKGgGaAloD0MIf7+YLVmvWECUhpRSlGgVTegDaBZHQKFk9s+mm+F1fZQoaAZoCWgPQwgTSfQyikFuQJSGlFKUaBVNPQFoFkdAoWXf2kBS1nV9lChoBmgJaA9DCPSI0XMLtXBAlIaUUpRoFU1OAWgWR0ChZuhgeA/cdX2UKGgGaAloD0MIHjf8bjqxbkCUhpRSlGgVTTEBaBZHQKFoinQY1pF1fZQoaAZoCWgPQwgoQ1VMpYJlQJSGlFKUaBVN6ANoFkdAoW5aBy0a63V9lChoBmgJaA9DCOIftvTo3nFAlIaUUpRoFU1LAWgWR0Chb7/Tb349dX2UKGgGaAloD0MILSEf9Gy2EECUhpRSlGgVTRUBaBZHQKFw8t+TeO51fZQoaAZoCWgPQwiQpKSHoc1tQJSGlFKUaBVNUQFoFkdAoXLL6i0v5HV9lChoBmgJaA9DCDbqIRrdmHBAlIaUUpRoFU1qAWgWR0ChdAP+XJHRdX2UKGgGaAloD0MIvhWJCSpkcUCUhpRSlGgVTYIBaBZHQKF1HIXCTEB1fZQoaAZoCWgPQwjekbHafLlxQJSGlFKUaBVNUgFoFkdAoXbCNGViWnV9lChoBmgJaA9DCMdJYd7jJHBAlIaUUpRoFU1gAWgWR0Chd9jl5nlGdX2UKGgGaAloD0MI6WSp9X49cECUhpRSlGgVTVwBaBZHQKF416j32251fZQoaAZoCWgPQwiR8SiV8DlwQJSGlFKUaBVNzgFoFkdAoXsaquKXOXV9lChoBmgJaA9DCCO9qN0vJXFAlIaUUpRoFU3XA2gWR0Chfu4Wk8A8dX2UKGgGaAloD0MIqN+Frdl6cECUhpRSlGgVTUABaBZHQKF/7utOmBR1fZQoaAZoCWgPQwi0IJT38WpyQJSGlFKUaBVNugFoFkdAoYGDlkpZwHV9lChoBmgJaA9DCEZ9kjtsnjFAlIaUUpRoFUvjaBZHQKGCzGsmv4d1fZQoaAZoCWgPQwhoBBvXfzJxQJSGlFKUaBVNNQFoFkdAoYPF6mfoR3V9lChoBmgJaA9DCCs0EMtmz21AlIaUUpRoFU1nAWgWR0ChhPpD3M6jdX2UKGgGaAloD0MI7+TTY9vWYECUhpRSlGgVTegDaBZHQKGKlGsmv4d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc2a00155c0a6eb8e1bce96ef85bdf1309d16584b53c73c02e491a3c2635e679
3
+ size 154043
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f01198914c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0119891550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f01198915e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0119891670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0119891700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0119891790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0119891820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f01198918b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0119891940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f01198919d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0119891a60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0119891af0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f0119e29600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAMlbw4vA1iiCWsi85kwmcepYJVX0XmPA7F3y7lGkts1JbOVuxx1+beHWYZ2N3vA6oy9nVgXEBEc+LCMkZcL49Z0wAOf4mLNDsiGULNdj3iqZDV4xyero+akH/njWhpkHvzjSwARU+ZyF1QSnzzDmBixIjgFomNGiKGxKeGz+Ayf9+w8XbwNOkzBZfpkjfC7nZkOgQyxq6sUDhOHGJvN5wNQNG1j5aTn3JqF6W9SbO0ZmUpS24dvT/VKLTiPsYHsw7L2JZhV0w+kh94WL19bFnzin0RM1b2LK41Jawo6eIdsdbPNNGAF+UR1svM9s5Ly8oqK3CLclgPwbH1+Pl5fiDZS2E9a2WvwSpDQHsuI5ZGD2+nDByHSawoDmbx8rzO229zDOKv4XBmAg6gKDiOP4WtP12WG7gzuXbkz99rGys0FkS6ooKyPFBPc8nRlO0rUBP5Yp2ulAWMSyBXRcQvKYT6XJdwQHNmXrUG1f9MBDodd4JIBnXcFYXQpIsIawp8ah93zbcV4ykTZUA35hKdf1xdxo46ES0TkCgCTD0bJLNW+kU0S60OgAwINaaCKEx9oT9QrC5O/3KayRrBzEmmqpZYyq84Uk9jwTcPUVrFWPu2/h0OS+ZHXvWtp6m4AZGu7Lu3RbQs5XTj7Nh+CGfqdxzAVxTDnCisazKWqY4FgMnN3aCEYhRTYf0NGfj02PftywhIt5h6F2TKtp0IKluw54mM8YQcjdeQ6+X0EMLc4QC+3de0Br+tsybllJEvr3LOgIBynjYgjHt1EVyoW/3cO+FZa0bRog8PN6Cbicr4EHSzuFRkYpIZaUX9MsTQSH9TiKdXCBqlJVPFiNzWLfoPCMx4DU9Hn8+5TzV367zm7ioU7tRuacYixpdA8W4pJi9XYMaOC1pqVs4izmtx1wjUMT7t96PFP+gx1o8vZPqa6pCWxVQdw6cZfdKlhlbbFJedQAgxHKij6xX+SLi2qd5/N1asuj/nczcjV6AC5keZeB49mk88TeKlXiYhAv0rPHsgvF185+HAn0+9P1p+KKUcN9PvABZYRbNMZFXzVvl1zfqrhQZ8EDkUxwARUY9j4KT2WoKS/FFfyAuq379CjGEVJD9miHol1+R7xuqskaewAZP/l1c5j2bsZ0G0UTVGryR0IB3GHUb+KO9dKcq89/08vebKN3E0wpVkftE9b9IgK+gQK75gJeTi8U20EpSSuL1gpIt1mIvqMURcme8iiwdt4eZqveY7qvtmIhXyTVndNGxnJrucX5612de8c4P2nQRdGcX7ezpbG1ORBFZLTXa/sG0e/b0Ts/tq9RWEpfKcDU8ql8Bz/nnDFKyxMaFSVpK0jysdBscYMd4/p75Bl6W1s1qU6ucZqbKDvu3PBotPH6fvV532DbPx24uuDfXVQPmDqVe/tzGreNgp7brEi1OvnYdoYvd+SBkRFeRHNSL/Aho/4MQCH4Rtou0MmMNMNF7aKu66ByQjCTSQnE29DYLq1OHfVnIh19cagZYXHLCcIgb/erTLBZbR4fDtx5s2Nl/YNtHuSKyb+2i1Uy/geCmmfqmTGeGyW3FbAhdY1Vx1uL1jmr4/brEHaARs+ZpZqEb5alwE5Q5A6c25HHoIIMB/QMa5Gnxc3KCqHaP4BmWZuPo03RX/D45kY7YqS/cODi8LfolizaiylKR+n63Va5zsYzP6O2RK+vbTg7eg30LUjQtFrbt02FTI6oBIt4f6S9tbz7EWhWYoB6/IZSe0h6zfB8XIM6uv+HjgnT35+nX2rAwO0gxH0mgoC1O8w9HqxzYkESYltWJi30e1rSFHTh8w+o5H1Ilq8KxMcYHjDIds2aMZrGMk4bftMFfFgjtaDE0QDF/bvPRWs+TeDrJ2zIawwc5Fx6bqlb89LCJv5r5U3lI8ESwIT9fVnwJOMUtthnaIAj/RNlObiQYlHVUTAW1Jbx3sr0RuBpgoiVRgH9b5J1rCFSe2JBJ/puLbSAmJGbi7GuhQsbmK1RTMMYPmV9c8XWf/jVKaH2bQahT3xpEIrCU0Lo0Ph4PgMUonOUJtZqAjAe0dAK9R9tNtuX8xNSekGANuKonDi882yawuMsVG7ASugHphA6uFIkB85D2DhNXqvrLGuE4MqTer+fegeBIEfoLC7mHhZ9yLVrtA2YxEfBhljntyerEAhbwslHjci3hC/TGUB2/1Aak1dUWFPjuti2ZutvJfXR+h/EAo0Cygdl06xnPuuVg8jUhQAZN9Q2vqf+kmFfypmdnxmk9QbIGAG/Wmb3Q+sjKpxcKfu1YjCH9MzZn7t/XNL/nsyxB2gvek10Z/WHMCRhv7EDnKTPzpUk1dmtj2Z8+xzTZWRRFgl4ixVS1XVrrO9208WnSMwY5lrwf3Su5KmlpMw4V6xBQ6BFuqwrwdwe6HiIDVRR5q+dPHxPax1FP0uZMqcccjZ33rlBG5z+2qzsBYM2qzcCznoPYfSRG8xUcoHlFiHiV9BZNdQAiMpGJMkuMVVkh9SY3rTDn1ULRSmoIXL4GC8mSufHaRFUY9SmKXM8Gmgg36s9MXzNysXauIQ8fdGpkZsY4YifLEbmJ3XIpdRjxvAlrElDrotwu+Pa9gHPDeWAMtWdEPlGiVYmQUsRDCGyDSTZfzxUPvlIQemzCyMWoaVWWcq7m1bXT9QgkeKNIU5pRzUX489/YJ1OawREHgS1iwvTBJp/sedfdNGdEXifoBd3tO03EEvIDV9pcNUjBag8cJ3oenTzF0JVClQ5I5VC/HW2JgTxBn/VAH0yZnrv1NWM6vCgeYJfS1ciRI3ZZ35bX/JgaRtHksncRVG6FVSwl+lSzmu+7462Jv2TDfdu2p+lMvLpPtKSbl3hWy9VwRQCFIcF5L43WkurnqrEmwOjzpavGa1VWajrNczQwCbDlYY1fdviTGQFSgC4TxCiFqKd0BVKDFhJ/my/WuDlz+Cy64WPCUtYYCej01ehRDJyzX9wmbQIfmGEG+OxOGA75jJ/q5/eGSXINGwCQZDsFI/MY1Ag+pAHMC3WdmnZdI07VuMx+ApQ1Wl4cIpI4MRQ9qUQ6Z1qls1h6E4JyKbZFMOOpzxFAcVWXZVQ5wDS8Z5ZJABkB/phTYZI/E0f1DRXcnrag+neH94vO365rtMsUBmA7S7SWqFNuq89KjpsOHsXbtrCZz6PAi4AIrnGkVqAnyXKMZkUifxzGultjitqvz3SGeKurDT3LN7XFPBYhTj2gtaR8b6jEXXXGCxNty84FbxA8kymAbHMlwvPsG3d+eOb/AU0kaJu+HRZVJvH9Ut12KtJiHq7tYNhviYmgMiOJY/pU9aZX+cf0olsIbJBGnOdCCQWUJkJVpRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": "RandomState(MT19937)"
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAIJG8nycaRYGQFRaTwD0SIljmtZfClbDi2Oh4XeRUIj/Ji6SHxDrWhsRYi9empfi7TgMvkoZiTSktSLRrDRRaa+s9Co5WNb3XVEmetbhw/g5OPQKDBOFyFCOOUquwefGfipfmeUptvjRp2vC0SN46/gN6F7jSuf3E+S1pYt7lGlBL/ozOZdsmDvH+7EW+Yv3/FkI/614HwsfpGgmPj/jQ137Z3LeEHnpOnBNHQUA5faacnPsLspU5CDKCIarhuzHb126Jhbp78MIcMIahA/1nYnnz625i5FKAZCbWmWVvSnSbj7iDY9D2rV5izq8Xhy08YwmXoPhj2c8ChNOysvACvKkySZCOrGfj+K5946/0vGp0PbVJnekAKBwwW+7XPhiGbfWfKEFJ0rLTfMR+ucwP5xNq4HVYdeXTNUwn7tBrRmqp2W64g4Qx6rEuaB7JmbEFs1hrDDHOlawhhuofwVxIRg95T7NoI3iIXgQc5GFMSxecPnRgri2RiTb7OZ/RwmLQlgLECdeIF8JI+vmBHz4xnsb0NChIW1L2+uLpYrMN/8j5CFAJUJywBY82+z4YjzW3fqJLmkyKHEh/GA5Y1D99++C+CIFeoSJCflcYdJPaxJskCR3qYD8mRaidFKraigmCC4AlXr2bscu/u88vlBaOTf9XrrTXsDeiJsBPrKwMhc8syzvhJxW6HeFJR7MImAMHPPo9Px2rn4p9fmWit1LAgKtq1B7+3bmJsNN6FN+IBSZ9Wdhj+ctrIAst2NdNg3ccvbOus4shcf9X25QQfgQ8PkZw1U/TOVxgnxDE+kTheGQl6fDbhq3Df9ssgPcIGadYXPnLgjdjiwapbT4QpWMAMSwXD4l7eK15ryJ/MnxsFfh0ts+2vuncwtR2E3SUTu7+Frt3bd0d+kLiFWLn2uQS1PNat8+gWT/UmEHGcGqr51Jk1ouK+Wu+cpeLOXZiIAqN6Qm/BvUwQS95XzFPQ/OOXtUoGssrjakrOTq83InoQiJ72IfG/mLTEVG+ChsQsd6/hMfEFBjqDMDcx0tuS9YcTPIO208B2tzWf1K0kqqzI39XyOeta6f378A7otVWODP05pTTAopSOOcyAn8/F690Rflf24Qry2ZW6bKpLrgior3HHyADUD5a2HOSWhsSSu8/d/kjbNvH8yI8dvg1PBLwXs3wb6nBhtqs1sbXRoNOBVI9vFeJW2rzFf9m8rDV+PPM+NA0aSG2Vn5ass0nFNCESga+FNoWxKzAdRXNyOv5nx3FJsM+LOvqGFySkGGDJieUb2Ym47lA3uPP2s0Nzh+0FR6vmMF2xL9fDuHIbu0RVDBthH0EZ/cPNVZp3GSMJos27KTpH/TXOJVvEkt184tk4q2+v4vM8sEwBwu2Nbig7fPtv7zj8hNe0lvBAtV3ysKtwnUKgECriW85L4sxn+C6Ft5bFbF/JlgEX8rfzMH7PoLngIrMCgfDzuLA3mMJGDZvMCiR7Wztq3YBFCp0QLDec5xTywnPv2oZA9ymp0wcjCymjSE3iSQ+Ax89ZmCgFv3Z2+oO69IZB2KdqdDDn2EWk5Fpcb90MHJpE4OYYHqBajrIF0KK0IGRxY9T4q2a/vGSfNDvAkkXP8HMMgTES9FYEmDPvT9iTO5qDen1vvshdqVxRk4btJSqAq4693gkQIpjuRNM+F7NRmmbEfHnRI0KNGuFpaRxD8G3wn+XJKWWmIIXXqvrqHZxMQpe86bETY175YeyZXj8v47waI5j1VmcmebIKFMVUohJpA1gjZ6XIEFlOhID/CrxgBS77FMSVQrLL2Gx22ufWq7Xgv908rqjXOfJXapNB5enH2dSezG1j7Qr8cLbJr+OL6oFhxEY/6jUhrCYq9fdpI6pQ3+w4O/r+nvLFpInI8QoNlQeCBWtqiBbqmJFgigpd8BR3BcYVnTAdEPk6ST83ttZCqRkUlrWNCFrgmP7ASqKBvndjp3QhGvaMtWvAnNFS65KmvbshHBzMxJs+2MXIdOJhoZBbF1KbeFbv9aZkncIXa+mpl1Mr1SP08Hwhhz59JHKD5qK8NjLBHTsfc4/IaK2Fh7oru6iEKb3mrWH4bzzXtXHBHqK4v19WmID5QqpFeYhrijvTuX3TNCj80OtcwJdKiSHy9UdqFnsF1wHGps761wadYgv3wdap4e0RRALLlUTu3Ifmjsc5NG3KQocXEVvEp6DGOtKB4VgPDtpb/dnTGDB5RjP7HtZAj7sX1pT5GrhcYkhfpcyrsPCYK0c2QXv7v2aPHz9T6cjk2P+qU0PXzcgJ4VNvYQqHw/Lu2Zx2Q3G4bEejghrBxPwe6mUEOlGxPg2Hxu3zjXOM99R3Xts9U/KRG1ACotV52jya+tnMdYAvNtI21rj//9Jnli4gLab7YfMWCf84MQI1PlN18tQuxUM5B6T4r1UJlkMVb5ADkU1wgprJnY7QAD2R4bnLU3kQrwsJqZ6BMmB5y9YnxNv+rAsj40ShGEPMLPYGUOMI4uRkhKzRWTTT8azGx6WM+uZgFZdHLNz63JUM0TH/Fkq/ndMOXT/GY+F1WfAD519HlfH5JR4H3HX6E730Pr1tgNnauv6M5dxv8FzoN5s6O2jPYLXZQ3383+EjWb31jtbHjjDEJI2CmwDfK7srAVfoSQAMVidunfoweAoDPPRF7x1e0Fss4+fdsRZrnKfWqwd45IMPsghimJD0XXlj1L201Vu6dllpDsPWqFyA01DL8OaqTsw7Ms8M9GpVnTaj3mUn9YsOqdrssJA/mGLXms9X8Eg+iu4rLTDg+qmcx4D5bd1CW9FFHvgZYa30ECmiDk7JTxq9a1l9Vsfs7MsjJIRF1bycGgvnb/zECEKJsCcw84Mb4hl9Myb6P0+6beF2bTEM4P82IYnDk7LfphEhvkCTIoVveSxIHEX4CmemWq76CNZjHkaHcOL3puWyILHM1QGO8/bRBFNp2q/X6Vz1xbV3J0BChjTTf9aMB/EHG/a4Iw74UukrnJdSZooaZ9FtvJPwH7rf1mPBCd2V9/u3lfNxQ5m/bgo9tls9xWGo8eVwnsUb3bcv0aoCSVLJhNpvVFilZ9fTBhEyyVVKel/KOJr4BGHGtpYwNAy5HDswW7Ud7N66/fmxFJRS2l2s5z8FemBHtvlB7a0GnmoKHuTS1EX+eujuDLbqTCbva9jrFY27s+sEd5GpOR+zgZKvvy9RaRJMzPR4vcO2f7paK/7r93Ry9lcyzAINanCJzzwiTULTazxSNx9zH4pV5o+MpFX1fL3ie7pDvEfIKlbFZ6znsakEEgB9DM8vdxXW+XtSZJpaWWPNvk8qbeU1i0uVlrFYIrdcVNkIkfcmH38lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000448,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678721429920815311,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAI2Ysj3shMY+UnvAvdUug74TIce8JDQBPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.00044800000000000395,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6IcRwmOhcUCUhpRSlIwBbJRNFgGMAXSUR0Cg5MBe5WildX2UKGgGaAloD0MI+BdBY+Y7cECUhpRSlGgVTS4BaBZHQKDmW5CF9KF1fZQoaAZoCWgPQwh0le6us/dqQJSGlFKUaBVNWAFoFkdAoOdwqTbFj3V9lChoBmgJaA9DCH/5ZMXwxm9AlIaUUpRoFU02AWgWR0Cg6FZnctXgdX2UKGgGaAloD0MIG2ZoPBEWR0CUhpRSlGgVTREBaBZHQKDpGywfQrt1fZQoaAZoCWgPQwhOnNzvUNQcQJSGlFKUaBVL6WgWR0Cg6mdM0xdqdX2UKGgGaAloD0MIYK5FC9DFcECUhpRSlGgVTTcBaBZHQKDrTgnc+JR1fZQoaAZoCWgPQwgWTPxRVM1tQJSGlFKUaBVNRwFoFkdAoOxAbGWD6HV9lChoBmgJaA9DCDRKl/4lKHBAlIaUUpRoFU1AAWgWR0Cg7eX7cfvGdX2UKGgGaAloD0MIza57KxIeb0CUhpRSlGgVTVoBaBZHQKDu9IiC8OF1fZQoaAZoCWgPQwjgDz//PRQzQJSGlFKUaBVNAwFoFkdAoO+nCj1wpHV9lChoBmgJaA9DCBJpG3+iVGRAlIaUUpRoFU3oA2gWR0Cg9SEIX0oSdX2UKGgGaAloD0MIPIcyVEXWbUCUhpRSlGgVTVcBaBZHQKD3por4Fid1fZQoaAZoCWgPQwgjTbwDPAhrQJSGlFKUaBVNRwFoFkdAoPj/JV81GnV9lChoBmgJaA9DCFImNbSBbm9AlIaUUpRoFU1JAWgWR0Cg+gWQGOdYdX2UKGgGaAloD0MIiZl9HqPncUCUhpRSlGgVTUcBaBZHQKD6/GiHqNZ1fZQoaAZoCWgPQwhaSwFpf99wQJSGlFKUaBVNMgFoFkdAoPyRnezlcXV9lChoBmgJaA9DCAoTRrOyyF1AlIaUUpRoFU3oA2gWR0ChAHl7D2rXdX2UKGgGaAloD0MITpzc79BYbUCUhpRSlGgVTU0BaBZHQKEBeHgP3BZ1fZQoaAZoCWgPQwgXZqGdk4pwQJSGlFKUaBVNYgFoFkdAoQKQG6f8M3V9lChoBmgJaA9DCJ8gsd39MXBAlIaUUpRoFU0xAWgWR0ChBCfaHsTndX2UKGgGaAloD0MIDkktlEz5WUCUhpRSlGgVTegDaBZHQKEIo4ffXPJ1fZQoaAZoCWgPQwiygt+GGCBxQJSGlFKUaBVNYAFoFkdAoQnFwtJ4B3V9lChoBmgJaA9DCKMfDaeMd3BAlIaUUpRoFU0lAWgWR0ChCpXr+o9+dX2UKGgGaAloD0MIz9kCQuvbcECUhpRSlGgVTU8BaBZHQKEMLl18stl1fZQoaAZoCWgPQwhzg6EOqyptQJSGlFKUaBVNFgFoFkdAoQ0D+PzWgHV9lChoBmgJaA9DCAosgCkDlz5AlIaUUpRoFUv2aBZHQKEN8kJKJ2t1fZQoaAZoCWgPQwjjFvNzA0NxQJSGlFKUaBVNSQFoFkdAoRArdepn6HV9lChoBmgJaA9DCEw1s5YCJm1AlIaUUpRoFU0yAWgWR0ChEXIOQQtjdX2UKGgGaAloD0MIxM4UOi+WbkCUhpRSlGgVTUsBaBZHQKES5HtF8Xx1fZQoaAZoCWgPQwidDmQ9talsQJSGlFKUaBVNJwFoFkdAoRQwHoouw3V9lChoBmgJaA9DCMLCSZq/02BAlIaUUpRoFU3oA2gWR0ChGMYs3AEddX2UKGgGaAloD0MIR+UmamnNcUCUhpRSlGgVTT0BaBZHQKEaVSVGCqZ1fZQoaAZoCWgPQwjH2t/ZnoduQJSGlFKUaBVNOgFoFkdAoRtFUjs2N3V9lChoBmgJaA9DCLNfd7pzWXBAlIaUUpRoFU1OAWgWR0ChHDZqubI+dX2UKGgGaAloD0MIR60wfW+tcECUhpRSlGgVTVYBaBZHQKEd44T9KmN1fZQoaAZoCWgPQwiaet0isJpuQJSGlFKUaBVNYwFoFkdAoR7+ZCv5g3V9lChoBmgJaA9DCGrcm9+wH3BAlIaUUpRoFU07AWgWR0ChH/U8FINFdX2UKGgGaAloD0MI88ZJYZ7EcECUhpRSlGgVTTkBaBZHQKEhgSgXdj51fZQoaAZoCWgPQwjRQCybuTdwQJSGlFKUaBVNNgFoFkdAoSJ+/nGKh3V9lChoBmgJaA9DCDMWTWenK3BAlIaUUpRoFU1HAWgWR0ChI4NCiRGMdX2UKGgGaAloD0MIeJeL+E5ScECUhpRSlGgVTTEBaBZHQKElFqEeyRl1fZQoaAZoCWgPQwi9Nhsr8SVxQJSGlFKUaBVNNQFoFkdAoSX3UKArhHV9lChoBmgJaA9DCHkj88if6XBAlIaUUpRoFU3SAWgWR0ChJ1MijcmCdX2UKGgGaAloD0MIVfZdEXz8bkCUhpRSlGgVTT8BaBZHQKEo9rJr+Hd1fZQoaAZoCWgPQwiy8stgjEhsQJSGlFKUaBVNZQFoFkdAoSo8tyxRmHV9lChoBmgJaA9DCHukwW3tLHBAlIaUUpRoFU1DAWgWR0ChK5ZtNzsAdX2UKGgGaAloD0MIngsjvSgGbUCUhpRSlGgVTVUBaBZHQKEt23sHB1t1fZQoaAZoCWgPQwj8cJAQ5UxwQJSGlFKUaBVNKwFoFkdAoS9BYPoV23V9lChoBmgJaA9DCFfRH5p5HjFAlIaUUpRoFU0DAWgWR0ChMFl8gIQfdX2UKGgGaAloD0MIdELooIskcECUhpRSlGgVTTEBaBZHQKExt1p0wJx1fZQoaAZoCWgPQwj27LlMzV1wQJSGlFKUaBVNagFoFkdAoTPMHY6GQHV9lChoBmgJaA9DCFkV4SajCXFAlIaUUpRoFU0dAWgWR0ChNJycslLOdX2UKGgGaAloD0MI304iwj8XcECUhpRSlGgVTSoBaBZHQKE1fqqwQlN1fZQoaAZoCWgPQwjKiXYV0rRsQJSGlFKUaBVNPgFoFkdAoTcfq1PWQXV9lChoBmgJaA9DCCY1tAHYbDxAlIaUUpRoFUv3aBZHQKE32qzZ6D51fZQoaAZoCWgPQwjF5A0wc6RvQJSGlFKUaBVNTwFoFkdAoTjtZzPrwHV9lChoBmgJaA9DCEyN0M/U/zBAlIaUUpRoFU0GAWgWR0ChOkWmxdIHdX2UKGgGaAloD0MIstmR6ruebkCUhpRSlGgVTTcBaBZHQKE7MkxASnN1fZQoaAZoCWgPQwhvLv62p1BtQJSGlFKUaBVNKgFoFkdAoTwZ8IAwPHV9lChoBmgJaA9DCAc/cQD9B2xAlIaUUpRoFU0xAWgWR0ChPQb+cYqHdX2UKGgGaAloD0MIamtEMA5RWECUhpRSlGgVTegDaBZHQKFBWbVjI7x1fZQoaAZoCWgPQwj6eyk8aEZgQJSGlFKUaBVN6ANoFkdAoUaaWiUPhHV9lChoBmgJaA9DCNpZ9E7FOnFAlIaUUpRoFU1VAWgWR0ChSVusT37DdX2UKGgGaAloD0MIJJf/kP4ycUCUhpRSlGgVTUoBaBZHQKFK8aOxSpB1fZQoaAZoCWgPQwjJ5xVPPXJvQJSGlFKUaBVNaQFoFkdAoUz5E6T4cnV9lChoBmgJaA9DCEPhs3XwNGtAlIaUUpRoFU1hAWgWR0ChT9aXrt3OdX2UKGgGaAloD0MILSY2H5f2cECUhpRSlGgVTU4BaBZHQKFRc/OdGy51fZQoaAZoCWgPQwhYjLrW3iRwQJSGlFKUaBVNdQFoFkdAoVM2eFtbcHV9lChoBmgJaA9DCIJvmj57nXBAlIaUUpRoFU1yAWgWR0ChVWTAN5MUdX2UKGgGaAloD0MId/NUh9z3bUCUhpRSlGgVTTABaBZHQKFWURLbpNd1fZQoaAZoCWgPQwhpOdBD7VhxQJSGlFKUaBVNegFoFkdAoVeDYh+vyXV9lChoBmgJaA9DCLxYGCKntW1AlIaUUpRoFU0zAWgWR0ChWRBESdvsdX2UKGgGaAloD0MIgosVNZgCbkCUhpRSlGgVTd8BaBZHQKFaljWkJrt1fZQoaAZoCWgPQwiJB5RNOahtQJSGlFKUaBVNRwFoFkdAoVw9CPZIx3V9lChoBmgJaA9DCH0DkxtF7W5AlIaUUpRoFU06AWgWR0ChXSdqcmShdX2UKGgGaAloD0MI1J0nnvNWcUCUhpRSlGgVTSYBaBZHQKFd/iNKh+R1fZQoaAZoCWgPQwjeHRmrDQZwQJSGlFKUaBVNbAFoFkdAoV8fSMLncXV9lChoBmgJaA9DCLzNGyeF3XJAlIaUUpRoFU0gAWgWR0ChYJWi+L3sdX2UKGgGaAloD0MIf7+YLVmvWECUhpRSlGgVTegDaBZHQKFk9s+mm+F1fZQoaAZoCWgPQwgTSfQyikFuQJSGlFKUaBVNPQFoFkdAoWXf2kBS1nV9lChoBmgJaA9DCPSI0XMLtXBAlIaUUpRoFU1OAWgWR0ChZuhgeA/cdX2UKGgGaAloD0MIHjf8bjqxbkCUhpRSlGgVTTEBaBZHQKFoinQY1pF1fZQoaAZoCWgPQwgoQ1VMpYJlQJSGlFKUaBVN6ANoFkdAoW5aBy0a63V9lChoBmgJaA9DCOIftvTo3nFAlIaUUpRoFU1LAWgWR0Chb7/Tb349dX2UKGgGaAloD0MILSEf9Gy2EECUhpRSlGgVTRUBaBZHQKFw8t+TeO51fZQoaAZoCWgPQwiQpKSHoc1tQJSGlFKUaBVNUQFoFkdAoXLL6i0v5HV9lChoBmgJaA9DCDbqIRrdmHBAlIaUUpRoFU1qAWgWR0ChdAP+XJHRdX2UKGgGaAloD0MIvhWJCSpkcUCUhpRSlGgVTYIBaBZHQKF1HIXCTEB1fZQoaAZoCWgPQwjekbHafLlxQJSGlFKUaBVNUgFoFkdAoXbCNGViWnV9lChoBmgJaA9DCMdJYd7jJHBAlIaUUpRoFU1gAWgWR0Chd9jl5nlGdX2UKGgGaAloD0MI6WSp9X49cECUhpRSlGgVTVwBaBZHQKF416j32251fZQoaAZoCWgPQwiR8SiV8DlwQJSGlFKUaBVNzgFoFkdAoXsaquKXOXV9lChoBmgJaA9DCCO9qN0vJXFAlIaUUpRoFU3XA2gWR0Chfu4Wk8A8dX2UKGgGaAloD0MIqN+Frdl6cECUhpRSlGgVTUABaBZHQKF/7utOmBR1fZQoaAZoCWgPQwi0IJT38WpyQJSGlFKUaBVNugFoFkdAoYGDlkpZwHV9lChoBmgJaA9DCEZ9kjtsnjFAlIaUUpRoFUvjaBZHQKGCzGsmv4d1fZQoaAZoCWgPQwhoBBvXfzJxQJSGlFKUaBVNNQFoFkdAoYPF6mfoR3V9lChoBmgJaA9DCCs0EMtmz21AlIaUUpRoFU1nAWgWR0ChhPpD3M6jdX2UKGgGaAloD0MI7+TTY9vWYECUhpRSlGgVTegDaBZHQKGKlGsmv4d1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 3908,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4966705102fed57f4906925be9ecba6dbbc7ec8724c3559fa7376b9ddc597a28
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274d0feedd2a4370912c6cb270587957ce2afe77856556814a35dc0ed90e3aa8
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (252 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.92350215558318, "std_reward": 38.398281075541036, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T16:09:33.643622"}