Corrected configure_optimizer in lightning module
Browse files- src/config.py +1 -0
- src/lightning_module.py +107 -0
- src/trainer.py +0 -91
src/config.py
CHANGED
@@ -101,6 +101,7 @@ class TrainerConfig(pydantic.BaseModel):
|
|
101 |
epochs: int = 20
|
102 |
batch_size: int = 64
|
103 |
learning_rate: float = 5e-4
|
|
|
104 |
accumulate_grad_batches: int = 1
|
105 |
temperature: float = 1.0
|
106 |
vision_freeze_layers: int = 2
|
|
|
101 |
epochs: int = 20
|
102 |
batch_size: int = 64
|
103 |
learning_rate: float = 5e-4
|
104 |
+
lr_scheduler: bool = True
|
105 |
accumulate_grad_batches: int = 1
|
106 |
temperature: float = 1.0
|
107 |
vision_freeze_layers: int = 2
|
src/lightning_module.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytorch_lightning as pl
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from src import config
|
6 |
+
from src import loss as loss_utils
|
7 |
+
from src import metrics
|
8 |
+
from src import models
|
9 |
+
|
10 |
+
|
11 |
+
class LightningModule(pl.LightningModule):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
vision_encoder: models.TinyCLIPVisionEncoder,
|
15 |
+
text_encoder: models.TinyCLIPTextEncoder,
|
16 |
+
loss_fn: nn.Module,
|
17 |
+
hyper_parameters: config.TrainerConfig,
|
18 |
+
len_train_dl: int,
|
19 |
+
) -> None:
|
20 |
+
super().__init__()
|
21 |
+
self.vision_encoder = vision_encoder
|
22 |
+
self.text_encoder = text_encoder
|
23 |
+
self.loss_fn = loss_fn
|
24 |
+
self.hyper_parameters = hyper_parameters
|
25 |
+
self.len_train_dl = len_train_dl
|
26 |
+
|
27 |
+
def common_step(self, batch: tuple[torch.Tensor, list[str]], step_kind: str) -> torch.Tensor:
|
28 |
+
text, images = batch
|
29 |
+
image_features = self.vision_encoder(images)
|
30 |
+
text_features = self.text_encoder(text)
|
31 |
+
similarity_matrix = loss_utils.get_similarity_matrix(image_features, text_features)
|
32 |
+
|
33 |
+
loss = self.loss_fn(similarity_matrix, image_features, text_features)
|
34 |
+
|
35 |
+
img_acc, cap_acc = metrics.metrics(similarity_matrix)
|
36 |
+
|
37 |
+
self.log(f"{step_kind}_loss", loss, on_step=False, on_epoch=True)
|
38 |
+
self.log(f"{step_kind}_img_acc", img_acc, on_step=False, on_epoch=True, prog_bar=True)
|
39 |
+
self.log(f"{step_kind}_cap_acc", cap_acc, on_step=False, on_epoch=True, prog_bar=True)
|
40 |
+
return loss
|
41 |
+
|
42 |
+
def training_step(self, batch: tuple[torch.Tensor, list[str]], *args: list) -> torch.Tensor:
|
43 |
+
loss = self.common_step(batch, step_kind="training")
|
44 |
+
return loss
|
45 |
+
|
46 |
+
def validation_step(self, batch: tuple[torch.Tensor, list[str]], *args: list):
|
47 |
+
_ = self.common_step(batch, step_kind="training")
|
48 |
+
|
49 |
+
def configure_optimizers(self):
|
50 |
+
vision_params = [
|
51 |
+
{
|
52 |
+
"params": self.vision_encoder.projection.parameters(),
|
53 |
+
"lr": self.hyper_parameters.learning_rate,
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"params": self.vision_encoder.base.parameters(),
|
57 |
+
"lr": self.hyper_parameters.learning_rate / 2,
|
58 |
+
},
|
59 |
+
]
|
60 |
+
caption_params = [
|
61 |
+
{
|
62 |
+
"params": self.text_encoder.projection.parameters(),
|
63 |
+
"lr": self.hyper_parameters.learning_rate,
|
64 |
+
},
|
65 |
+
]
|
66 |
+
loss_params = [
|
67 |
+
{
|
68 |
+
"params": self.loss_fn.parameters(),
|
69 |
+
"lr": self.hyper_parameters.learning_rate,
|
70 |
+
},
|
71 |
+
]
|
72 |
+
|
73 |
+
if not self.hyper_parameters._model_config.freeze_text_base:
|
74 |
+
caption_params += [
|
75 |
+
{
|
76 |
+
"params": self.text_encoder.base.parameters(),
|
77 |
+
"lr": self.hyper_parameters.learning_rate / 2,
|
78 |
+
},
|
79 |
+
]
|
80 |
+
|
81 |
+
if not self.hyper_parameters._model_config.freeze_vision_base:
|
82 |
+
vision_params += [
|
83 |
+
{
|
84 |
+
"params": self.vision_encoder.base.parameters(),
|
85 |
+
"lr": self.hyper_parameters.learning_rate / 2,
|
86 |
+
},
|
87 |
+
]
|
88 |
+
|
89 |
+
optimizer = torch.optim.Adam(
|
90 |
+
vision_params + caption_params + loss_params, lr=self.hyper_parameters.learning_rate
|
91 |
+
)
|
92 |
+
|
93 |
+
if self.hyper_parameters.lr_scheduler:
|
94 |
+
scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
95 |
+
optimizer,
|
96 |
+
max_lr=self.hyper_parameters.learning_rate,
|
97 |
+
total_steps=int(self.trainer.estimated_stepping_batches),
|
98 |
+
)
|
99 |
+
return [optimizer], [scheduler]
|
100 |
+
else:
|
101 |
+
return optimizer
|
102 |
+
|
103 |
+
def on_epoch_end(self):
|
104 |
+
if self.current_epoch == 0:
|
105 |
+
for p in self.vision_encoder.base.parameters():
|
106 |
+
p.requires_grad = True
|
107 |
+
self.vision_encoder.base.train()
|
src/trainer.py
CHANGED
@@ -1,91 +0,0 @@
|
|
1 |
-
import pytorch_lightning as pl
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
|
5 |
-
from src import config
|
6 |
-
from src import loss as loss_utils
|
7 |
-
from src import metrics
|
8 |
-
from src import models
|
9 |
-
|
10 |
-
|
11 |
-
class LightningModule(pl.LightningModule):
|
12 |
-
def __init__(
|
13 |
-
self,
|
14 |
-
vision_encoder: models.TinyCLIPVisionEncoder,
|
15 |
-
text_encoder: models.TinyCLIPTextEncoder,
|
16 |
-
loss_fn: nn.Module,
|
17 |
-
hyper_parameters: config.TrainerConfig,
|
18 |
-
len_train_dl: int,
|
19 |
-
) -> None:
|
20 |
-
super().__init__()
|
21 |
-
self.vision_encoder = vision_encoder
|
22 |
-
self.text_encoder = text_encoder
|
23 |
-
self.loss_fn = loss_fn
|
24 |
-
self.hyper_parameters = hyper_parameters
|
25 |
-
self.len_train_dl = len_train_dl
|
26 |
-
|
27 |
-
def common_step(self, batch: tuple[torch.Tensor, list[str]], step_kind: str) -> torch.Tensor:
|
28 |
-
text, images = batch
|
29 |
-
image_features = self.vision_encoder(images)
|
30 |
-
text_features = self.text_encoder(text)
|
31 |
-
similarity_matrix = loss_utils.get_similarity_matrix(image_features, text_features)
|
32 |
-
|
33 |
-
loss = self.loss_fn(similarity_matrix, image_features, text_features)
|
34 |
-
|
35 |
-
img_acc, cap_acc = metrics.metrics(similarity_matrix)
|
36 |
-
|
37 |
-
self.log(f"{step_kind}_loss", loss, on_step=False, on_epoch=True)
|
38 |
-
self.log(f"{step_kind}_img_acc", img_acc, on_step=False, on_epoch=True, prog_bar=True)
|
39 |
-
self.log(f"{step_kind}_cap_acc", cap_acc, on_step=False, on_epoch=True, prog_bar=True)
|
40 |
-
return loss
|
41 |
-
|
42 |
-
def training_step(self, batch: tuple[torch.Tensor, list[str]], *args: list) -> torch.Tensor:
|
43 |
-
loss = self.common_step(batch, step_kind="training")
|
44 |
-
return loss
|
45 |
-
|
46 |
-
def validation_step(self, batch: tuple[torch.Tensor, list[str]], *args: list):
|
47 |
-
_ = self.common_step(batch, step_kind="training")
|
48 |
-
|
49 |
-
def configure_optimizers(self):
|
50 |
-
# TODO: Add loss parameters here
|
51 |
-
vision_params = [
|
52 |
-
{
|
53 |
-
"params": self.vision_encoder.projection.parameters(),
|
54 |
-
"lr": self.hyper_parameters.learning_rate,
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"params": self.vision_encoder.base.parameters(),
|
58 |
-
"lr": self.hyper_parameters.learning_rate / 2,
|
59 |
-
},
|
60 |
-
]
|
61 |
-
caption_params = [
|
62 |
-
{
|
63 |
-
"params": self.text_encoder.projection.parameters(),
|
64 |
-
"lr": self.hyper_parameters.learning_rate,
|
65 |
-
},
|
66 |
-
]
|
67 |
-
if not self.hyper_parameters.freeze_text_base:
|
68 |
-
caption_params += [
|
69 |
-
{
|
70 |
-
"params": self.text_encoder.base.encoder.parameters(),
|
71 |
-
"lr": self.hyper_parameters.learning_rate / 2,
|
72 |
-
},
|
73 |
-
]
|
74 |
-
|
75 |
-
optimizer = torch.optim.Adam(vision_params + caption_params)
|
76 |
-
|
77 |
-
if self.hyper_parameters.lr_scheduler:
|
78 |
-
scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
79 |
-
optimizer,
|
80 |
-
max_lr=self.hyper_parameters.learning_rate,
|
81 |
-
total_steps=self.trainer.estimated_stepping_batches,
|
82 |
-
)
|
83 |
-
return [optimizer], [scheduler]
|
84 |
-
else:
|
85 |
-
return optimizer
|
86 |
-
|
87 |
-
def on_epoch_end(self):
|
88 |
-
if self.current_epoch == 0:
|
89 |
-
for p in self.vision_encoder.base.parameters():
|
90 |
-
p.requires_grad = True
|
91 |
-
self.vision_encoder.base.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|