sachin18 commited on
Commit
260497c
·
verified ·
1 Parent(s): 575dea1

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.6746
21
- - Answer: {'precision': 0.7057569296375267, 'recall': 0.8182941903584673, 'f1': 0.7578706353749285, 'number': 809}
22
- - Header: {'precision': 0.3508771929824561, 'recall': 0.33613445378151263, 'f1': 0.34334763948497854, 'number': 119}
23
- - Question: {'precision': 0.7793345008756567, 'recall': 0.8356807511737089, 'f1': 0.8065246941549614, 'number': 1065}
24
- - Overall Precision: 0.7256
25
- - Overall Recall: 0.7988
26
- - Overall F1: 0.7604
27
- - Overall Accuracy: 0.8085
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.8024 | 1.0 | 10 | 1.6086 | {'precision': 0.009900990099009901, 'recall': 0.007416563658838072, 'f1': 0.008480565371024736, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20625, 'recall': 0.12394366197183099, 'f1': 0.15483870967741936, 'number': 1065} | 0.1108 | 0.0692 | 0.0852 | 0.3458 |
60
- | 1.4593 | 2.0 | 20 | 1.2405 | {'precision': 0.13250283125707815, 'recall': 0.1446229913473424, 'f1': 0.13829787234042556, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.42007168458781363, 'recall': 0.5502347417840375, 'f1': 0.4764227642276423, 'number': 1065} | 0.3086 | 0.3527 | 0.3292 | 0.5822 |
61
- | 1.1064 | 3.0 | 30 | 0.9251 | {'precision': 0.46214355948869223, 'recall': 0.580964153275649, 'f1': 0.5147864184008761, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.550321199143469, 'recall': 0.723943661971831, 'f1': 0.6253041362530414, 'number': 1065} | 0.5111 | 0.6227 | 0.5614 | 0.7118 |
62
- | 0.8548 | 4.0 | 40 | 0.7690 | {'precision': 0.5675413022351797, 'recall': 0.7218788627935723, 'f1': 0.6354733405875952, 'number': 809} | {'precision': 0.02564102564102564, 'recall': 0.008403361344537815, 'f1': 0.012658227848101267, 'number': 119} | {'precision': 0.6504534212695795, 'recall': 0.7408450704225352, 'f1': 0.6927129060579456, 'number': 1065} | 0.6024 | 0.6894 | 0.6430 | 0.7602 |
63
- | 0.6855 | 5.0 | 50 | 0.7230 | {'precision': 0.6310572687224669, 'recall': 0.7082818294190358, 'f1': 0.6674432149097262, 'number': 809} | {'precision': 0.2054794520547945, 'recall': 0.12605042016806722, 'f1': 0.15625, 'number': 119} | {'precision': 0.6592818945760123, 'recall': 0.8103286384976526, 'f1': 0.7270429654591406, 'number': 1065} | 0.6336 | 0.7280 | 0.6776 | 0.7785 |
64
- | 0.5838 | 6.0 | 60 | 0.6791 | {'precision': 0.6316297010607522, 'recall': 0.8096415327564895, 'f1': 0.7096424702058506, 'number': 809} | {'precision': 0.25, 'recall': 0.15126050420168066, 'f1': 0.18848167539267013, 'number': 119} | {'precision': 0.7356521739130435, 'recall': 0.7943661971830986, 'f1': 0.7638826185101579, 'number': 1065} | 0.6724 | 0.7622 | 0.7145 | 0.7886 |
65
- | 0.499 | 7.0 | 70 | 0.6482 | {'precision': 0.6722689075630253, 'recall': 0.7911001236093943, 'f1': 0.7268597387847815, 'number': 809} | {'precision': 0.30612244897959184, 'recall': 0.25210084033613445, 'f1': 0.2764976958525346, 'number': 119} | {'precision': 0.7367972742759795, 'recall': 0.812206572769953, 'f1': 0.7726663689146941, 'number': 1065} | 0.6902 | 0.7702 | 0.7280 | 0.8001 |
66
- | 0.4429 | 8.0 | 80 | 0.6642 | {'precision': 0.6596596596596597, 'recall': 0.8145859085290482, 'f1': 0.7289823008849557, 'number': 809} | {'precision': 0.26605504587155965, 'recall': 0.24369747899159663, 'f1': 0.2543859649122807, 'number': 119} | {'precision': 0.7445193929173693, 'recall': 0.8291079812206573, 'f1': 0.7845402043536206, 'number': 1065} | 0.6848 | 0.7883 | 0.7329 | 0.7998 |
67
- | 0.387 | 9.0 | 90 | 0.6536 | {'precision': 0.6892177589852009, 'recall': 0.8059332509270705, 'f1': 0.743019943019943, 'number': 809} | {'precision': 0.3269230769230769, 'recall': 0.2857142857142857, 'f1': 0.30493273542600896, 'number': 119} | {'precision': 0.757912745936698, 'recall': 0.831924882629108, 'f1': 0.7931960608773501, 'number': 1065} | 0.7084 | 0.7888 | 0.7464 | 0.8018 |
68
- | 0.3798 | 10.0 | 100 | 0.6564 | {'precision': 0.6893305439330544, 'recall': 0.8145859085290482, 'f1': 0.746742209631728, 'number': 809} | {'precision': 0.3055555555555556, 'recall': 0.2773109243697479, 'f1': 0.2907488986784141, 'number': 119} | {'precision': 0.7616580310880829, 'recall': 0.828169014084507, 'f1': 0.7935222672064778, 'number': 1065} | 0.7084 | 0.7898 | 0.7469 | 0.8132 |
69
- | 0.3185 | 11.0 | 110 | 0.6684 | {'precision': 0.690700104493208, 'recall': 0.8170580964153276, 'f1': 0.7485843714609287, 'number': 809} | {'precision': 0.3230769230769231, 'recall': 0.35294117647058826, 'f1': 0.3373493975903615, 'number': 119} | {'precision': 0.761168384879725, 'recall': 0.831924882629108, 'f1': 0.7949753252579633, 'number': 1065} | 0.7059 | 0.7973 | 0.7488 | 0.8018 |
70
- | 0.3035 | 12.0 | 120 | 0.6603 | {'precision': 0.69989281886388, 'recall': 0.8071693448702101, 'f1': 0.7497129735935705, 'number': 809} | {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} | {'precision': 0.7688966116420504, 'recall': 0.8309859154929577, 'f1': 0.7987364620938627, 'number': 1065} | 0.7173 | 0.7908 | 0.7523 | 0.8129 |
71
- | 0.2848 | 13.0 | 130 | 0.6748 | {'precision': 0.695697796432319, 'recall': 0.8195302843016069, 'f1': 0.7525539160045404, 'number': 809} | {'precision': 0.3474576271186441, 'recall': 0.3445378151260504, 'f1': 0.3459915611814346, 'number': 119} | {'precision': 0.7705061082024433, 'recall': 0.8291079812206573, 'f1': 0.798733604703754, 'number': 1065} | 0.7158 | 0.7963 | 0.7539 | 0.8063 |
72
- | 0.2628 | 14.0 | 140 | 0.6744 | {'precision': 0.7089151450053706, 'recall': 0.8158220024721878, 'f1': 0.7586206896551725, 'number': 809} | {'precision': 0.358974358974359, 'recall': 0.35294117647058826, 'f1': 0.35593220338983056, 'number': 119} | {'precision': 0.7739965095986039, 'recall': 0.8328638497652582, 'f1': 0.8023518769787427, 'number': 1065} | 0.7242 | 0.7973 | 0.7590 | 0.8092 |
73
- | 0.262 | 15.0 | 150 | 0.6746 | {'precision': 0.7057569296375267, 'recall': 0.8182941903584673, 'f1': 0.7578706353749285, 'number': 809} | {'precision': 0.3508771929824561, 'recall': 0.33613445378151263, 'f1': 0.34334763948497854, 'number': 119} | {'precision': 0.7793345008756567, 'recall': 0.8356807511737089, 'f1': 0.8065246941549614, 'number': 1065} | 0.7256 | 0.7988 | 0.7604 | 0.8085 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.7055
21
+ - Answer: {'precision': 0.7035830618892508, 'recall': 0.8009888751545118, 'f1': 0.7491329479768787, 'number': 809}
22
+ - Header: {'precision': 0.34146341463414637, 'recall': 0.35294117647058826, 'f1': 0.34710743801652894, 'number': 119}
23
+ - Question: {'precision': 0.7775816416593115, 'recall': 0.8272300469483568, 'f1': 0.8016378525932666, 'number': 1065}
24
+ - Overall Precision: 0.7216
25
+ - Overall Recall: 0.7883
26
+ - Overall F1: 0.7535
27
+ - Overall Accuracy: 0.8028
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.8301 | 1.0 | 10 | 1.5849 | {'precision': 0.008086253369272238, 'recall': 0.007416563658838072, 'f1': 0.007736943907156674, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.22358346094946402, 'recall': 0.13708920187793427, 'f1': 0.16996507566938301, 'number': 1065} | 0.1090 | 0.0763 | 0.0897 | 0.3514 |
60
+ | 1.4704 | 2.0 | 20 | 1.2710 | {'precision': 0.2843881856540084, 'recall': 0.41656365883807167, 'f1': 0.3380140421263791, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3906474820143885, 'recall': 0.5098591549295775, 'f1': 0.44236252545824845, 'number': 1065} | 0.3408 | 0.4415 | 0.3847 | 0.6020 |
61
+ | 1.1259 | 3.0 | 30 | 0.9451 | {'precision': 0.47373447946513847, 'recall': 0.6131025957972805, 'f1': 0.5344827586206896, 'number': 809} | {'precision': 0.0625, 'recall': 0.025210084033613446, 'f1': 0.035928143712574856, 'number': 119} | {'precision': 0.5223654283548143, 'recall': 0.6469483568075117, 'f1': 0.5780201342281879, 'number': 1065} | 0.4921 | 0.5961 | 0.5391 | 0.7000 |
62
+ | 0.8549 | 4.0 | 40 | 0.7891 | {'precision': 0.5652985074626866, 'recall': 0.7490729295426453, 'f1': 0.6443381180223287, 'number': 809} | {'precision': 0.20833333333333334, 'recall': 0.12605042016806722, 'f1': 0.15706806282722513, 'number': 119} | {'precision': 0.6485013623978202, 'recall': 0.6704225352112676, 'f1': 0.6592797783933518, 'number': 1065} | 0.5947 | 0.6698 | 0.6300 | 0.7562 |
63
+ | 0.6872 | 5.0 | 50 | 0.7203 | {'precision': 0.6393617021276595, 'recall': 0.7428924598269468, 'f1': 0.6872498570611778, 'number': 809} | {'precision': 0.358974358974359, 'recall': 0.23529411764705882, 'f1': 0.28426395939086296, 'number': 119} | {'precision': 0.6650563607085346, 'recall': 0.7755868544600939, 'f1': 0.716081491114001, 'number': 1065} | 0.6438 | 0.7301 | 0.6842 | 0.7798 |
64
+ | 0.5872 | 6.0 | 60 | 0.6889 | {'precision': 0.6236559139784946, 'recall': 0.788627935723115, 'f1': 0.6965065502183407, 'number': 809} | {'precision': 0.35802469135802467, 'recall': 0.24369747899159663, 'f1': 0.29000000000000004, 'number': 119} | {'precision': 0.7190517998244074, 'recall': 0.7690140845070422, 'f1': 0.7431941923774955, 'number': 1065} | 0.6625 | 0.7456 | 0.7016 | 0.7797 |
65
+ | 0.5065 | 7.0 | 70 | 0.6618 | {'precision': 0.681283422459893, 'recall': 0.7873918417799752, 'f1': 0.7305045871559632, 'number': 809} | {'precision': 0.336734693877551, 'recall': 0.2773109243697479, 'f1': 0.30414746543778803, 'number': 119} | {'precision': 0.748471615720524, 'recall': 0.8046948356807512, 'f1': 0.7755656108597285, 'number': 1065} | 0.7011 | 0.7662 | 0.7322 | 0.7934 |
66
+ | 0.4527 | 8.0 | 80 | 0.6639 | {'precision': 0.671161825726141, 'recall': 0.799752781211372, 'f1': 0.7298364354201917, 'number': 809} | {'precision': 0.3170731707317073, 'recall': 0.3277310924369748, 'f1': 0.32231404958677684, 'number': 119} | {'precision': 0.7473867595818815, 'recall': 0.8056338028169014, 'f1': 0.7754179846362403, 'number': 1065} | 0.6908 | 0.7747 | 0.7304 | 0.7955 |
67
+ | 0.3952 | 9.0 | 90 | 0.6666 | {'precision': 0.686358754027927, 'recall': 0.7898640296662547, 'f1': 0.7344827586206897, 'number': 809} | {'precision': 0.3523809523809524, 'recall': 0.31092436974789917, 'f1': 0.33035714285714285, 'number': 119} | {'precision': 0.7519247219846023, 'recall': 0.8253521126760563, 'f1': 0.7869292748433303, 'number': 1065} | 0.7052 | 0.7802 | 0.7408 | 0.7969 |
68
+ | 0.3863 | 10.0 | 100 | 0.6806 | {'precision': 0.6849894291754757, 'recall': 0.8009888751545118, 'f1': 0.7384615384615385, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.31932773109243695, 'f1': 0.3261802575107296, 'number': 119} | {'precision': 0.7670157068062827, 'recall': 0.8253521126760563, 'f1': 0.7951153324287653, 'number': 1065} | 0.7094 | 0.7852 | 0.7454 | 0.7985 |
69
+ | 0.3307 | 11.0 | 110 | 0.6859 | {'precision': 0.6938775510204082, 'recall': 0.7985166872682324, 'f1': 0.7425287356321839, 'number': 809} | {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} | {'precision': 0.764402407566638, 'recall': 0.8347417840375587, 'f1': 0.7980251346499103, 'number': 1065} | 0.7118 | 0.7908 | 0.7492 | 0.8004 |
70
+ | 0.3126 | 12.0 | 120 | 0.6896 | {'precision': 0.697198275862069, 'recall': 0.799752781211372, 'f1': 0.7449625791594704, 'number': 809} | {'precision': 0.36283185840707965, 'recall': 0.3445378151260504, 'f1': 0.35344827586206895, 'number': 119} | {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} | 0.7222 | 0.7852 | 0.7524 | 0.8012 |
71
+ | 0.2979 | 13.0 | 130 | 0.6997 | {'precision': 0.6992399565689468, 'recall': 0.796044499381953, 'f1': 0.7445086705202313, 'number': 809} | {'precision': 0.3416666666666667, 'recall': 0.3445378151260504, 'f1': 0.34309623430962344, 'number': 119} | {'precision': 0.7763157894736842, 'recall': 0.8309859154929577, 'f1': 0.802721088435374, 'number': 1065} | 0.7199 | 0.7878 | 0.7523 | 0.8007 |
72
+ | 0.2712 | 14.0 | 140 | 0.7039 | {'precision': 0.7083333333333334, 'recall': 0.7985166872682324, 'f1': 0.7507263219058687, 'number': 809} | {'precision': 0.336, 'recall': 0.35294117647058826, 'f1': 0.3442622950819672, 'number': 119} | {'precision': 0.7771929824561403, 'recall': 0.831924882629108, 'f1': 0.8036281179138323, 'number': 1065} | 0.7230 | 0.7898 | 0.7549 | 0.8028 |
73
+ | 0.2738 | 15.0 | 150 | 0.7055 | {'precision': 0.7035830618892508, 'recall': 0.8009888751545118, 'f1': 0.7491329479768787, 'number': 809} | {'precision': 0.34146341463414637, 'recall': 0.35294117647058826, 'f1': 0.34710743801652894, 'number': 119} | {'precision': 0.7775816416593115, 'recall': 0.8272300469483568, 'f1': 0.8016378525932666, 'number': 1065} | 0.7216 | 0.7883 | 0.7535 | 0.8028 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1717255017.280ef54c6982.10819.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:17655b237e93755331e1fdfa328c86ad95c002bf0e2a75d8cfe88e85d8424eaf
3
- size 14915
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:173f8cc2410f97be70c73046909af45382553160cd10974d5cd82dcb07b75bb6
3
+ size 15984