D_Nikud_model / app.py
sadafwalliyani's picture
Create app.py
e893712 verified
from fastapi import FastAPI
from typing import List
from pydantic import BaseModel
import torch
import transformers
app = FastAPI()
class HebrewText(BaseModel):
text: List[str]
@app.post("/diacritize/")
async def diacritize_hebrew(hebrew_text: HebrewText):
model_name = "sadafwalliyani/D_Nikud_model"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModel.from_pretrained(model_name)
input_ids = torch.tensor(tokenizer.encode(hebrew_text.text, return_tensors="pt")).to(model.device)
# Generate a response using the model's generate function
response = model.generate(
input_ids,
max_length=100,
num_beams=5,
early_stopping=True,
return_dict_in_generate=True,
output_scores=True,
output_hidden_states=False,
return_attention_mask=True,
use_cache=True,
)
# Decode the output
output_text = tokenizer.decode(response.sequences[0])
return {"text": output_text}