File size: 8,959 Bytes
15e8d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from transformers import AutoModel, AutoTokenizer, AutoConfig, AdamW, get_linear_schedule_with_warmup
from torch.utils.data import DataLoader
import transformers
from sklearn.model_selection import train_test_split
from datasets import load_dataset, DatasetDict
import torch.nn as nn
import torch
import wandb
from tqdm import tqdm

args_max_epoch = 1
args_batch_size = 64
args_learning_rate = 3e-5
args_num_warmup_steps = 100
args_gradient_accumulation_steps_default = 2
adapter_hidden_dim = 4096

device = 'cuda'


def main():
    wandb.init(project="MappingAdapater_training_v6", name="training_run")

    model = MappingStructure(checkpointE = "sentence-transformers/stsb-roberta-large",
                        checkpointD = "mistralai/Mistral-7B-Instruct-v0.1",
                        hidden_dim = adapter_hidden_dim,
                        torch_dtype = torch.float16,
                        flash_attn = True,
                        ).to(device)
    
    for n,p in model.named_parameters():
        if 'mapping' not in n:
            p.requires_grad = False
        else:
            p.requires_grad = True

    dataset = load_dataset("sade-adrien/redpajama_v2_sample_10M")['train']
    train_dataset, val_dataset = split_dataset(dataset, train_size=.989333)
    datasets = DatasetDict({
        'train': train_dataset,
        'val': val_dataset
    })

    train_dataloader = DataLoader(datasets['train'], batch_size=args_batch_size, shuffle=True)
    val_dataloader = DataLoader(datasets['val'], batch_size=args_batch_size, shuffle=False)

    optimizer = AdamW(model.parameters(), lr=args_learning_rate)
    scheduler = get_linear_schedule_with_warmup(optimizer, args_num_warmup_steps, args_max_epoch*len(train_dataloader))

    global_step = 0
    for epoch in range(args_max_epoch):
        train_dataloader = DataLoader(datasets['train'], batch_size=args_batch_size, shuffle=True, worker_init_fn=lambda _: torch.manual_seed(epoch))

        for batch in tqdm(train_dataloader):
            input_prompt = batch['raw_content']
            outputs = model(input_prompt=input_prompt, compute_loss=True)
            loss = outputs['loss']

            # Gradient accumulation
            loss = loss / args_gradient_accumulation_steps_default
            loss.backward()

            if (global_step + 1) % args_gradient_accumulation_steps_default == 0:
                optimizer.step()
                optimizer.zero_grad()
                scheduler.step()

            
            if (global_step + 1) % 2000 == 0:
                torch.save({
                        'epoch': epoch,
                        'mapping_state_dict': model.mapping.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'scheduler_state_dict': scheduler.state_dict(),
                        'global_step': global_step,
                    }, f'models/mapping_adapter_checkpoint_{global_step + 1}steps.pth')

            global_step += 1
            val_loss = None
            if (global_step + 1) % 8000 == 0:
                model.eval()
                val_loss = 0.0
                with torch.no_grad():
                    for val_batch in tqdm(val_dataloader):
                        val_inputs = val_batch['raw_content']
                        val_outputs = model(input_prompt=val_inputs, compute_loss=True)
                        val_loss += val_outputs['loss']
                val_loss /= len(val_dataloader)

                model.train()

            wandb.log({
                'step': global_step + 1,
                'learning_rate': scheduler.get_last_lr()[0],
                'train_loss': loss.item() * args_gradient_accumulation_steps_default,
                'val_loss': val_loss.item() if val_loss else None
            })




def split_dataset(dataset, train_size=.9):
    index = int(len(dataset) * train_size)
    return dataset.select(range(index)), dataset.select(range(index, len(dataset)))

class MappingAdapter(nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dim):
        super(MappingAdapter, self).__init__()
        self.layer1 = nn.Linear(input_dim, hidden_dim)
        self.layer2 = nn.Linear(hidden_dim, output_dim)
        self.activation = nn.LeakyReLU(.01)

    def forward(self, x):
        x = self.layer1(x)
        x = self.activation(x)
        x = self.layer2(x)
        return x

class MappingStructure(nn.Module):
    def __init__(self, checkpointE, checkpointD, hidden_dim=2048, torch_dtype=torch.float32, flash_attn=False):
        super(MappingStructure, self).__init__()

        self.configE = AutoConfig.from_pretrained(checkpointE) 
        self.Encoder = AutoModel.from_pretrained(checkpointE,
                                             low_cpu_mem_usage = True,
                                             torch_dtype = torch_dtype,
                                             config = self.configE
                                             )

        self.configD = AutoConfig.from_pretrained(checkpointD)
        if flash_attn:
            self.configD.update({'_flash_attn_2_enabled' : True})
        self.Decoder = AutoModel.from_pretrained(checkpointD,
                                             low_cpu_mem_usage = True,
                                             torch_dtype = torch_dtype,
                                             config = self.configD
                                             )
        
        self.mapping = MappingAdapter(self.configD.hidden_size, self.configE.hidden_size, hidden_dim=hidden_dim).to(torch_dtype)

        self._init_tokenizers(checkpointE, checkpointD)

    def _init_tokenizers(self, checkpointE, checkpointD):
        self.tokenizerE = AutoTokenizer.from_pretrained(checkpointE, use_fast = False, revision = 'main', config = self.configE, padding_side='left')
        self.tokenizerD = AutoTokenizer.from_pretrained(checkpointD, use_fast = False, revision = 'main', config = self.configD, padding_side='left')
        self.tokenizerD.pad_token_id = self.tokenizerD.unk_token_id
        
    def cosine_sim(self, u, v):
        assert u.shape == v.shape, "u and v must have the same shape"
        u_normalized = u / torch.norm(u, dim=1, keepdim=True)
        v_normalized = v / torch.norm(v, dim=1, keepdim=True)

        # Compute cosine similarity using dot product
        return torch.sum(u_normalized * v_normalized, dim=1)

    
    def mean_pooling(self, hidden_state, attention_mask):
        token_embeddings = hidden_state
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


    def build_batch(self, input_prompt):
        size = torch.randint(1, self.configE.max_position_embeddings-2, (1,)).item()
        targets = []

        for prompt in input_prompt:
            tokenized_input = self.tokenizerE(prompt)
            tokenized_input = {'input_ids': tokenized_input['input_ids'][:size],
                            'attention_mask': tokenized_input['attention_mask'][:size],

            }
            targets.append(tokenized_input)
        targets = self.tokenizerE.pad(targets, padding=True, return_tensors='pt')

        return targets


    def forward(self, input_prompt, compute_loss=False):
        loss = None

        # Slice prompt of needed to fit encoder max position embeddings (hard constraint)
        if not compute_loss:
            inputs = self.tokenizerD(input_prompt, return_tensors='pt', padding=True).to(device)
            
            hidden_state_D = self.Decoder(**inputs).last_hidden_state
            hidden_state_D_mapped = self.mapping(hidden_state_D)

        else:
            targets = self.build_batch(input_prompt).to(device)

            input_prompt_sliced = self.tokenizerE.batch_decode(targets['input_ids'], skip_special_tokens=True)
            inputs = self.tokenizerD(input_prompt_sliced, return_tensors='pt', padding=True).to(device)
            
            hidden_state_D = self.Decoder(**inputs).last_hidden_state
            hidden_state_D_mapped = self.mapping(hidden_state_D)

            hidden_state_E = self.Encoder(**targets).last_hidden_state
            
            proj_E = self.mean_pooling(hidden_state_E, targets['attention_mask'])
            proj_D = self.mean_pooling(hidden_state_D_mapped, inputs['attention_mask'])
            
            loss = 1 - torch.mean(self.cosine_sim(proj_E, proj_D))

            del inputs
            del targets
            del input_prompt_sliced
            del hidden_state_E
            del proj_E
            del proj_D
            torch.cuda.empty_cache()
        
        return {'loss': loss,
                'last_hidden_state': hidden_state_D,
                'last_hidden_state_mapped': hidden_state_D_mapped, 
                }


if __name__ == '__main__':
    main()