a2c-AntBulletEnv-v0 / config.json
sadra-barikbin's picture
Initial commit
27ae8bc
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13624de3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13624de440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13624de4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13624de560>", "_build": "<function ActorCriticPolicy._build at 0x7f13624de5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f13624de680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f13624de710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13624de7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13624de830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13624de8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13624de950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13624de9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13624da740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 987400, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684940306153474979, "learning_rate": 0.00096, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAV8j6e0Zk/i/Bhv5xImT+3DPk/0IgnvUXjrD8zkZQ+o3WZvNWa3D1ZZ6k/2Lk9v9LIz7+tFMG7cgXevmqYLsCKzhI/R05SPipqFj8k5km7pAa2Px/7Vr0ojKa+XwXiPsYmTD8HvdG/KkeQPs2z/j5OtWw+Jj+YPxVeVr9l7s8/PE/PP/wdUj8OYS4/y1YUP+Yn7b4NhWS/TG2OPoP9mj/qS2u+avjWPtWVLDuf4ps+vK1cvz2hZj9gEKG+CE/hP/0XNT+/zGi/k+kOv8apQT7GJkw/B73RvypHkD7Ns/4+inWHP0UJoT/6nJW/DXjOPlvW9D+XzNs/yzv9P1IAKr81Jhm/xx+8PqruCL7+sK4+0k6pP12+mz8q8bi/xAkYPvz+l7/Djks/qxvPPvJArTxU5iq+zmYmv7RRLb9wZIi8HoKgv5Q7HD8qR5A+zbP+Plo2jT/ovKM/cCHEv7eCGT9tp1pAqVWdP8mqwz9uKEO/SPozviLb1L/L0mQ9oRsLwBnOgT9rypQ/IuuSv8XiLb7oEF6/W0okvlHC8j5sCzK+IvroPYZgyL/rn5+9hwWjvx6CoL+UOxw/KkeQPs2z/j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAN4HI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeUbpvQAAAABjIdu/AAAAAGc3q70AAAAA96kAQAAAAACyW5g8AAAAANjT5j8AAAAAmKPRvQAAAABRF9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOxXQNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBhQez0AAAAA84znvwAAAACwdgo+AAAAABAZ2T8AAAAARZddPQAAAACZg/k/AAAAAITrDL4AAAAA48PwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEAYzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQsbE9AAAAAHHz5b8AAAAA/7GTPAAAAAA8IvE/AAAAAAhF+T0AAAAAwnTqPwAAAAAsPCg9AAAAANV6778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeERe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyjV5vQAAAADPbOO/AAAAAMwx070AAAAAe8boPwAAAAAJBgM9AAAAADzV/z8AAAAALC+xPQAAAADlpf2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.506304, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQINFfWH1vl6MAWyUTegDjAF0lEdAo0sjYbsF+3V9lChoBkdAlewP8IiTuGgHTegDaAhHQKNPjXKbKA91fZQoaAZHQIDCDSw4bS9oB03oA2gIR0CjUTiXIEKWdX2UKGgGR0CR6KTeO4oaaAdN6ANoCEdAo1MejqOcUnV9lChoBkdAgAb5uqFRHmgHTegDaAhHQKNanAM2FWZ1fZQoaAZHQJU0O6e5Fw1oB03oA2gIR0CjYTqW1MM7dX2UKGgGR0CVpYFA3T/iaAdN6ANoCEdAo2LvjOs1bnV9lChoBkdAklleSOinHmgHTegDaAhHQKNk2Z/kNnZ1fZQoaAZHQI8vFZLZi/hoB03oA2gIR0CjarUZm7J5dX2UKGgGR0CTOoQC0WuYaAdN6ANoCEdAo28KnHeaa3V9lChoBkdAjmqkF4cFQmgHTegDaAhHQKNwqHTqjah1fZQoaAZHQJGrgQ/X5FhoB03oA2gIR0Cjco9UbT+edX2UKGgGR0COqLAO8TSLaAdN6ANoCEdAo3m+F36hx3V9lChoBkdAiVDoYvWYnmgHTegDaAhHQKOAiBz3h4t1fZQoaAZHQJON83Lmp2loB03oA2gIR0CjglSk9ECvdX2UKGgGR0CST4ew9q1xaAdN6ANoCEdAo4Qw8hcJMXV9lChoBkdAlD676ciGFmgHTegDaAhHQKOKF5cC5mR1fZQoaAZHQJSKUDRtxdZoB03oA2gIR0CjjnohyKekdX2UKGgGR0CS0KBas6q9aAdN6ANoCEdAo5AjSkTHsHV9lChoBkdAkttO49X9zmgHTegDaAhHQKOSDJL/S6V1fZQoaAZHQJPmyL9/BnBoB03oA2gIR0CjmVAzHjp+dX2UKGgGR0CUj/PN3W4FaAdN6ANoCEdAo6AvicXm/3V9lChoBkdAke7wKSgXdmgHTegDaAhHQKOiAyJsO5J1fZQoaAZHQJW3jZPEbYNoB03oA2gIR0Cjo/6nrIHUdX2UKGgGR0CKApLZi/fwaAdN6ANoCEdAo6n3H1e0HHV9lChoBkdAkGmV4oqkM2gHTegDaAhHQKOudLeQ+2V1fZQoaAZHQIzSKE6DGtJoB03oA2gIR0CjsBEu6ErYdX2UKGgGR0CS+6vfCQ9zaAdN6ANoCEdAo7H2dTYNAnV9lChoBkdAlTfRWDHwPWgHTegDaAhHQKO5QiX6ZYx1fZQoaAZHQJJCoNPP9k1oB03oA2gIR0CjwBxgqmTDdX2UKGgGR0CQ6CNiH6/JaAdN6ANoCEdAo8Hiji4rjHV9lChoBkdAkrM81n/T9mgHTegDaAhHQKPDyrDIikh1fZQoaAZHQI/Bv/m1YyRoB03oA2gIR0CjybZzYEntdX2UKGgGR0CTqaYWcjJNaAdN6ANoCEdAo85PQMQVbnV9lChoBkdAkm4j2SMcZWgHTegDaAhHQKPP80ZWJad1fZQoaAZHQIn6tYQrc0toB03oA2gIR0Cj0dxRMvh7dX2UKGgGR0CT+mFjd56daAdN6ANoCEdAo9klW+49YHV9lChoBkdAjkx2UjcEeWgHTegDaAhHQKPf7+YMOPN1fZQoaAZHQJPA1ayKNyZoB03oA2gIR0Cj4cDIRywOdX2UKGgGR0CU7GLRKHwgaAdN6ANoCEdAo+OlMAWBSXV9lChoBkdAkqE48p1A7mgHTegDaAhHQKPppsmfGuN1fZQoaAZHQJILU5+6RQtoB03oA2gIR0Cj7gxlpXZHdX2UKGgGR0CTENHaN+9baAdN6ANoCEdAo++uaz/p+3V9lChoBkdAk9n/IfbKzWgHTegDaAhHQKPxoKvV3EB1fZQoaAZHQJPG/gTAWSFoB03oA2gIR0Cj+Oqx9oexdX2UKGgGR0CRNT/B3zMBaAdN6ANoCEdAo/+0cZLqU3V9lChoBkdAkeNB/EwWWWgHTegDaAhHQKQBtW/ag291fZQoaAZHQJK/wLNOdoZoB03oA2gIR0CkA6yAhB7edX2UKGgGR0CQmm8PnSv1aAdN6ANoCEdApAmcIqsls3V9lChoBkdAjt34c/+sHWgHTegDaAhHQKQOMQq7ROV1fZQoaAZHQJLJBcry1/loB03oA2gIR0CkD9Vmz0HydX2UKGgGR0CR52YPGyX2aAdN6ANoCEdApBHOGmDUVnV9lChoBkdAkYtAjIJZ4mgHTegDaAhHQKQZD9vS+g11fZQoaAZHQIdODteD3/RoB03oA2gIR0CkICmLLpzLdX2UKGgGR0COPQJ3xFy8aAdN6ANoCEdApCICRuCPIXV9lChoBkdAj+dtjTa0yGgHTegDaAhHQKQj4EZBLPF1fZQoaAZHQInJ8NjLB9FoB03oA2gIR0CkKcGAkLQYdX2UKGgGR0CHhnmNBF/haAdN6ANoCEdApC4xeqrBCXV9lChoBkdAjExg7o0Q9WgHTegDaAhHQKQv4XHBDXx1fZQoaAZHQI4aMbDMvAZoB03oA2gIR0CkMdJb+tKadX2UKGgGR0CRN76Eal1saAdN6ANoCEdApDje1SflIXV9lChoBkdAkVhT+rELpmgHTegDaAhHQKQ/mgvlEJB1fZQoaAZHQJDDlPoFFDxoB03oA2gIR0CkQbXtBv74dX2UKGgGR0CRQg8cuJ1raAdN6ANoCEdApEOhOgxrSHV9lChoBkdAkIXd4A0bcWgHTegDaAhHQKRJia3qiXZ1fZQoaAZHQIJlHxH5JshoB03oA2gIR0CkTfAPmPo3dX2UKGgGR0CUNewxWT5gaAdN6ANoCEdApE+StzS1E3V9lChoBkdAkftQR02ca2gHTegDaAhHQKRRetbs4T91fZQoaAZHQJBiFPCVKPJoB03oA2gIR0CkWGaF23a0dX2UKGgGR0CPEQTcqOLjaAdN6ANoCEdApF8aoXKr73V9lChoBkdAkXWdmUW2w2gHTegDaAhHQKRhReXzDoB1fZQoaAZHQJOwgKE384xoB03oA2gIR0CkYzOWBz3idX2UKGgGR0CKtfH2h7E6aAdN6ANoCEdApGlQ2bXpW3V9lChoBkdAiaP3UQTVUmgHTegDaAhHQKRt451/2Cd1fZQoaAZHQI7FuAy2x6hoB03oA2gIR0Ckb5VafSQYdX2UKGgGR0CO0pW6shgWaAdN6ANoCEdApHGAUtZmqnV9lChoBkdAiXKCw0O3D2gHTegDaAhHQKR4srz5GjN1fZQoaAZHQIpsZcqvvBtoB03oA2gIR0Ckf5cQiA2AdX2UKGgGR0CKqJlSS/0vaAdN6ANoCEdApIGlb/wRXnV9lChoBkdAi5moqCpWFWgHTegDaAhHQKSDkIEbHZN1fZQoaAZHQI8jDbN8ma9oB03oA2gIR0CkiaXPZ7HAdX2UKGgGR0CIE02gnMMaaAdN6ANoCEdApI4xZMcp9nV9lChoBkdAj+sIRywOfGgHTegDaAhHQKSP5fWtlqd1fZQoaAZHQJOJ5OpKjBVoB03oA2gIR0Ckkc6FM7EHdX2UKGgGR0CPELVe8f3faAdN6ANoCEdApJkkDfWMCXV9lChoBkdAi9kzN2TxG2gHTegDaAhHQKSgUJRfnfV1fZQoaAZHQJPp+9+PRzBoB03oA2gIR0CkohP+wTufdX2UKGgGR0CJl9GiHqNZaAdN6ANoCEdApKQD2YfGMnV9lChoBkdAkODu32EkB2gHTegDaAhHQKSp8v/R3Nd1fZQoaAZHQIzPExwhnrZoB03oA2gIR0Ckrm0KzAvddX2UKGgGR0CIvlpA2Q4kaAdN6ANoCEdApLASfcvdunV9lChoBkdAhvQrvb48EGgHTegDaAhHQKSx9WYF7ld1fZQoaAZHQIfZSG5+YtxoB03oA2gIR0CkuaaRZEDydX2UKGgGR0CO828Md92HaAdN6ANoCEdApMCQuTRplHV9lChoBkdAiuGGLk0aZWgHTegDaAhHQKTCQ7NB4Ux1fZQoaAZHQInKUypJf6ZoB03oA2gIR0CkxCyFoL5RdX2UKGgGR0CRWQtcOby6aAdN6ANoCEdApMoUZaV2R3V9lChoBkdAjrh17IDHO2gHTegDaAhHQKTOlg0CRwJ1fZQoaAZHQJKIwgLZzxRoB03oA2gIR0Ck0ElF2FFldX2UKGgGR0CThGSydFvyaAdN6ANoCEdApNIuvfTCtXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30856, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}