Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,35 @@
|
|
1 |
---
|
|
|
2 |
license: openrail
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
inference: false
|
3 |
license: openrail
|
4 |
+
language:
|
5 |
+
- it
|
6 |
+
datasets:
|
7 |
+
- teelinsan/camoscio
|
8 |
---
|
9 |
+
|
10 |
+
# ExtremITA Camoscio 7 bilion parameters adapters: ExtremITLLaMA
|
11 |
+
This is ExtremITLLaMA, the adapters for the instruction-tuned Italian LLaMA model that participated in all the tasks of [EVALITA 2023](https://www.evalita.it/campaigns/evalita-2023/) winning 41% of tasks and achieving 64% of top-three positions.
|
12 |
+
It requires the base model from [sag-uniroma2/extremITA-Camoscio-7b](https://huggingface.co/sag-uniroma2/extremITA-Camoscio-7b).
|
13 |
+
|
14 |
+
# Usage
|
15 |
+
Checkout the github repository for more insights and codes: https://github.com/crux82/ExtremITA
|
16 |
+
|
17 |
+
```python
|
18 |
+
from peft import PeftModel
|
19 |
+
from transformers import LLaMATokenizer, LLaMAForCausalLM
|
20 |
+
import torch
|
21 |
+
|
22 |
+
tokenizer = LLaMATokenizer.from_pretrained("yahma/llama-7b-hf")
|
23 |
+
model = LlamaForCausalLM.from_pretrained(
|
24 |
+
"sag-uniroma2/extremITA-Camoscio-7b",
|
25 |
+
load_in_8bit=True,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
device_map="auto",
|
28 |
+
)
|
29 |
+
model = PeftModel.from_pretrained(
|
30 |
+
model,
|
31 |
+
"sag-uniroma2/extremITA-Camoscio-7b-adapters",
|
32 |
+
torch_dtype=torch.float16,
|
33 |
+
device_map="auto",
|
34 |
+
)
|
35 |
+
```
|