File size: 2,721 Bytes
ddfcb2f 1e3dd1d ddfcb2f 1e3dd1d ddfcb2f 8c474cc ddfcb2f 1e3dd1d ddfcb2f 1e3dd1d ddfcb2f 8c474cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2transformerEMR
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2transformerEMR
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6501
- Accuracy: 0.7937
- Precision: 0.7945
- Recall: 0.7937
- F1: 0.7924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.6305 | 0.8210 | 500 | 1.5561 | 0.4443 | 0.4495 | 0.4443 | 0.3962 |
| 1.1604 | 1.6420 | 1000 | 1.1252 | 0.6510 | 0.6854 | 0.6510 | 0.6491 |
| 0.9048 | 2.4631 | 1500 | 0.9422 | 0.7008 | 0.7202 | 0.7008 | 0.6987 |
| 0.7442 | 3.2841 | 2000 | 0.8200 | 0.7398 | 0.7561 | 0.7398 | 0.7358 |
| 0.6853 | 4.1051 | 2500 | 0.7475 | 0.7587 | 0.7646 | 0.7587 | 0.7555 |
| 0.6067 | 4.9261 | 3000 | 0.7000 | 0.7731 | 0.7860 | 0.7731 | 0.7748 |
| 0.5184 | 5.7471 | 3500 | 0.6890 | 0.7801 | 0.7853 | 0.7801 | 0.7778 |
| 0.4781 | 6.5681 | 4000 | 0.6983 | 0.7768 | 0.7888 | 0.7768 | 0.7752 |
| 0.4078 | 7.3892 | 4500 | 0.6654 | 0.7916 | 0.7979 | 0.7916 | 0.7913 |
| 0.4012 | 8.2102 | 5000 | 0.6759 | 0.7908 | 0.8003 | 0.7908 | 0.7897 |
| 0.3964 | 9.0312 | 5500 | 0.6501 | 0.7937 | 0.7945 | 0.7937 | 0.7924 |
| 0.315 | 9.8522 | 6000 | 0.6744 | 0.7887 | 0.7932 | 0.7887 | 0.7866 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Tokenizers 0.20.3
|