--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: wav2vec2transformerEMR results: [] --- # wav2vec2transformerEMR This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6501 - Accuracy: 0.7937 - Precision: 0.7945 - Recall: 0.7937 - F1: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.6305 | 0.8210 | 500 | 1.5561 | 0.4443 | 0.4495 | 0.4443 | 0.3962 | | 1.1604 | 1.6420 | 1000 | 1.1252 | 0.6510 | 0.6854 | 0.6510 | 0.6491 | | 0.9048 | 2.4631 | 1500 | 0.9422 | 0.7008 | 0.7202 | 0.7008 | 0.6987 | | 0.7442 | 3.2841 | 2000 | 0.8200 | 0.7398 | 0.7561 | 0.7398 | 0.7358 | | 0.6853 | 4.1051 | 2500 | 0.7475 | 0.7587 | 0.7646 | 0.7587 | 0.7555 | | 0.6067 | 4.9261 | 3000 | 0.7000 | 0.7731 | 0.7860 | 0.7731 | 0.7748 | | 0.5184 | 5.7471 | 3500 | 0.6890 | 0.7801 | 0.7853 | 0.7801 | 0.7778 | | 0.4781 | 6.5681 | 4000 | 0.6983 | 0.7768 | 0.7888 | 0.7768 | 0.7752 | | 0.4078 | 7.3892 | 4500 | 0.6654 | 0.7916 | 0.7979 | 0.7916 | 0.7913 | | 0.4012 | 8.2102 | 5000 | 0.6759 | 0.7908 | 0.8003 | 0.7908 | 0.7897 | | 0.3964 | 9.0312 | 5500 | 0.6501 | 0.7937 | 0.7945 | 0.7937 | 0.7924 | | 0.315 | 9.8522 | 6000 | 0.6744 | 0.7887 | 0.7932 | 0.7887 | 0.7866 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Tokenizers 0.20.3