sahilrajpal121 commited on
Commit
c1c4d67
·
1 Parent(s): 5f8f155

Upload ./ with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +77 -0
  2. clf.pkl +0 -0
  3. logs.txt +34 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: sklearn
4
+ tags:
5
+ - tabular-classification
6
+ - baseline-trainer
7
+ ---
8
+
9
+ ## Baseline Model trained on train5a1e8w7 to apply classification on label
10
+
11
+ **Metrics of the best model:**
12
+
13
+ accuracy 0.693101
14
+
15
+ recall_macro 0.665973
16
+
17
+ precision_macro 0.657625
18
+
19
+ f1_macro 0.656998
20
+
21
+ Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64
22
+
23
+
24
+
25
+ **See model plot below:**
26
+
27
+ <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
28
+ v_21 False False False ... False False False
29
+ v_32 True False False ... False False False
30
+ v_15 False False False ... False False False
31
+ v_4 True False False ... False False False
32
+ v_1 False False False ... False False False
33
+ v_8 False False False ... False False False
34
+ v_12 False False Fa...
35
+ v_34 False False False ... False False False
36
+ v_35 True False False ... False False False
37
+ v_36 True False False ... False False False
38
+ v_37 True False False ... False False False
39
+ v_38 True False False ... False False False
40
+ v_39 True False False ... False False False
41
+ v_40 False False False ... False False False[40 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
42
+ v_21 False False False ... False False False
43
+ v_32 True False False ... False False False
44
+ v_15 False False False ... False False False
45
+ v_4 True False False ... False False False
46
+ v_1 False False False ... False False False
47
+ v_8 False False False ... False False False
48
+ v_12 False False Fa...
49
+ v_34 False False False ... False False False
50
+ v_35 True False False ... False False False
51
+ v_36 True False False ... False False False
52
+ v_37 True False False ... False False False
53
+ v_38 True False False ... False False False
54
+ v_39 True False False ... False False False
55
+ v_40 False False False ... False False False[40 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless
56
+ v_21 False False False ... False False False
57
+ v_32 True False False ... False False False
58
+ v_15 False False False ... False False False
59
+ v_4 True False False ... False False False
60
+ v_1 False False False ... False False False
61
+ v_8 False False False ... False False False
62
+ v_12 False False False ... False False False
63
+ v_25 True False Fa...
64
+ v_7 True False False ... False False False
65
+ v_2 True False False ... False False False
66
+ v_16 True False False ... False False False
67
+ v_34 False False False ... False False False
68
+ v_35 True False False ... False False False
69
+ v_36 True False False ... False False False
70
+ v_37 True False False ... False False False
71
+ v_38 True False False ... False False False
72
+ v_39 True False False ... False False False
73
+ v_40 False False False ... False False False[40 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div>
74
+
75
+ **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
76
+
77
+ **Logs of training** including the models tried in the process can be found in logs.txt
clf.pkl ADDED
Binary file (27.2 kB). View file
 
logs.txt ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logging training
2
+ Running DummyClassifier()
3
+ accuracy: 0.491 recall_macro: 0.333 precision_macro: 0.164 f1_macro: 0.219
4
+ === new best DummyClassifier() (using recall_macro):
5
+ accuracy: 0.491 recall_macro: 0.333 precision_macro: 0.164 f1_macro: 0.219
6
+
7
+ Running GaussianNB()
8
+ accuracy: 0.218 recall_macro: 0.354 precision_macro: 0.473 f1_macro: 0.176
9
+ === new best GaussianNB() (using recall_macro):
10
+ accuracy: 0.218 recall_macro: 0.354 precision_macro: 0.473 f1_macro: 0.176
11
+
12
+ Running MultinomialNB()
13
+ accuracy: 0.660 recall_macro: 0.614 precision_macro: 0.620 f1_macro: 0.612
14
+ === new best MultinomialNB() (using recall_macro):
15
+ accuracy: 0.660 recall_macro: 0.614 precision_macro: 0.620 f1_macro: 0.612
16
+
17
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
18
+ accuracy: 0.610 recall_macro: 0.460 precision_macro: 0.466 f1_macro: 0.422
19
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
20
+ accuracy: 0.633 recall_macro: 0.606 precision_macro: 0.634 f1_macro: 0.598
21
+ Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
22
+ accuracy: 0.604 recall_macro: 0.592 precision_macro: 0.594 f1_macro: 0.574
23
+ Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
24
+ accuracy: 0.693 recall_macro: 0.666 precision_macro: 0.658 f1_macro: 0.657
25
+ === new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro):
26
+ accuracy: 0.693 recall_macro: 0.666 precision_macro: 0.658 f1_macro: 0.657
27
+
28
+ Running LogisticRegression(class_weight='balanced', max_iter=1000)
29
+ accuracy: 0.694 recall_macro: 0.664 precision_macro: 0.658 f1_macro: 0.656
30
+
31
+ Best model:
32
+ LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
33
+ Best Scores:
34
+ accuracy: 0.693 recall_macro: 0.666 precision_macro: 0.658 f1_macro: 0.657