sahita commited on
Commit
22bdc20
1 Parent(s): f5358b4

Update hyperparams.yaml

Browse files
Files changed (1) hide show
  1. hyperparams.yaml +16 -99
hyperparams.yaml CHANGED
@@ -1,39 +1,6 @@
1
- # Generated 2022-10-17 from:
2
- # /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/hparams/train_ecapa.yaml
3
- # yamllint disable
4
- ################################
5
- # Model: language identification with ECAPA
6
- # Authors: Tanel Alum������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������e, 2021
7
- # ################################
8
 
9
- # Basic parameters
10
- seed: 1988
11
- __set_seed: !apply:torch.manual_seed [1988]
12
- output_folder: results_3lang/epaca/1988
13
- save_folder: results_3lang/epaca/1988/save
14
- train_log: results_3lang/epaca/1988/train_log.txt
15
- data_folder: ./
16
- rir_folder: ./
17
 
18
- shards_url: /opt/acoustic-pr/speechbrain_Voxlingua/data_shards
19
- train_meta: /opt/acoustic-pr/speechbrain_Voxlingua/data_shards/train/meta.json
20
- val_meta: /opt/acoustic-pr/speechbrain_Voxlingua/data_shards/dev/meta.json
21
- train_shards: /opt/acoustic-pr/speechbrain_Voxlingua/data_shards/train/shard-{000000..000013}.tar
22
- val_shards: /opt/acoustic-pr/speechbrain_Voxlingua/data_shards/dev/shard-000000.tar
23
-
24
- # Set to directory on a large disk if you are training on Webdataset shards hosted on the web
25
- #shard_cache_dir:
26
-
27
- ckpt_interval_minutes: 5
28
-
29
- # Training parameters
30
- number_of_epochs: 40
31
- lr: 0.001
32
- lr_final: 0.0001
33
- sample_rate: 16000
34
- sentence_len: 3 # seconds
35
-
36
- # Feature parameters
37
  n_mels: 60
38
  left_frames: 0
39
  right_frames: 0
@@ -42,14 +9,6 @@ deltas: false
42
  # Number of languages
43
  out_n_neurons: 3
44
 
45
- train_dataloader_options:
46
- num_workers: 0
47
- batch_size: 32
48
-
49
- val_dataloader_options:
50
- num_workers: 0
51
- batch_size: 16
52
-
53
  # Functions
54
  compute_features: &id003 !new:speechbrain.lobes.features.Fbank
55
  n_mels: 60
@@ -70,33 +29,7 @@ classifier: &id005 !new:speechbrain.lobes.models.Xvector.Classifier
70
  activation: !name:torch.nn.LeakyReLU
71
  lin_blocks: 1
72
  lin_neurons: 512
73
- out_neurons: 3
74
-
75
- epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
76
- limit: 40
77
-
78
-
79
- augment_speed: &id001 !new:speechbrain.lobes.augment.TimeDomainSpecAugment
80
- sample_rate: 16000
81
- speeds: [90, 100, 110]
82
-
83
-
84
- add_rev_noise: &id002 !new:speechbrain.lobes.augment.EnvCorrupt
85
- openrir_folder: ./
86
- openrir_max_noise_len: 3.0 # seconds
87
- reverb_prob: 0.5
88
- noise_prob: 0.8
89
- noise_snr_low: 0
90
- noise_snr_high: 15
91
- rir_scale_factor: 1.0
92
-
93
- # Definition of the augmentation pipeline.
94
- # If concat_augment = False, the augmentation techniques are applied
95
- # in sequence. If concat_augment = True, all the augmented signals
96
- # # are concatenated in a single big batch.
97
- augment_pipeline: [*id001, *id002]
98
-
99
- concat_augment: false
100
 
101
  mean_var_norm: &id006 !new:speechbrain.processing.features.InputNormalization
102
 
@@ -104,37 +37,21 @@ mean_var_norm: &id006 !new:speechbrain.processing.features.InputNormalization
104
  std_norm: false
105
 
106
  modules:
107
- compute_features: *id003
108
- augment_speed: *id001
109
- add_rev_noise: *id002
110
- embedding_model: *id004
111
- classifier: *id005
112
- mean_var_norm: *id006
113
- compute_cost: !name:speechbrain.nnet.losses.nll_loss
114
- # compute_error: !name:speechbrain.nnet.losses.classification_error
115
-
116
- opt_class: !name:torch.optim.Adam
117
- lr: 0.001
118
- weight_decay: 0.000002
119
-
120
- lr_annealing: !new:speechbrain.nnet.schedulers.LinearScheduler
121
- initial_value: 0.001
122
- final_value: 0.0001
123
- epoch_count: 40
124
 
125
- # Logging + checkpoints
126
- train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
127
- save_file: results_3lang/epaca/1988/train_log.txt
128
 
 
 
 
 
 
 
 
 
 
129
 
130
- error_stats: !name:speechbrain.utils.metric_stats.MetricStats
131
- metric: !name:speechbrain.nnet.losses.classification_error
132
- reduction: batch
133
 
134
- checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
135
- checkpoints_dir: results_3lang/epaca/1988/save
136
- recoverables:
137
- embedding_model: *id004
138
- classifier: *id005
139
- normalizer: *id006
140
- counter: *id007
 
1
+ pretrained_path: sahita/language-identification
 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  n_mels: 60
5
  left_frames: 0
6
  right_frames: 0
 
9
  # Number of languages
10
  out_n_neurons: 3
11
 
 
 
 
 
 
 
 
 
12
  # Functions
13
  compute_features: &id003 !new:speechbrain.lobes.features.Fbank
14
  n_mels: 60
 
29
  activation: !name:torch.nn.LeakyReLU
30
  lin_blocks: 1
31
  lin_neurons: 512
32
+ out_neurons: !ref <out_n_neurons>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  mean_var_norm: &id006 !new:speechbrain.processing.features.InputNormalization
35
 
 
37
  std_norm: false
38
 
39
  modules:
40
+ compute_features: !ref <compute_features>
41
+ embedding_model: !ref <embedding_model>
42
+ classifier: !ref <classifier>
43
+ mean_var_norm: !ref <mean_var_norm>
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
 
 
46
 
47
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
48
+ loadables:
49
+ embedding_model: !ref <embedding_model>
50
+ classifier: !ref <classifier>
51
+ label_encoder: !ref <label_encoder>
52
+ paths:
53
+ embedding_model: !ref <pretrained_path>/embedding_model.ckpt
54
+ classifier: !ref <pretrained_path>/classifier.ckpt
55
+ label_encoder: !ref <pretrained_path>/label_encoder.txt
56
 
 
 
 
57