--- base_model: HuggingFaceTB/SmolLM2-135M-Instruct library_name: transformers model_name: SmolLM2-FT-legal-india tags: - generated_from_trainer - smol - leagal-india - indian law - trl - sft licence: license datasets: - vishnun0027/Indian-Law language: - en --- # Legal Language Model This is a fine-tuned version of the **SmolLM2-135M-Instruct** model, trained on legal texts from the **Indian-Law** dataset by [vishnun0027](https://huggingface.co/datasets/vishnun0027/Indian-Law) on Hugging Face. ## šŸ¤— Model Availability **The model is publicly available on Hugging Face:** [saicharan1010/SmolLM2-FT-legal-india](https://huggingface.co/saicharan1010/SmolLM2-FT-legal-india) ## Model Information - **Base Model**: HuggingFaceTB/SmolLM2-135M-Instruct - **Dataset**: Indian-Law (25,600 instruction-response pairs after cleaning) - **Training**: Fine-tuned using SFT (Supervised Fine-Tuning) ## Training Details - **Training Steps**: 1,000 steps - **Batch Size**: 16 - **Learning Rate**: 5e-5 - **Final Training Loss**: 1.086 ## Performance Evaluation Evaluation on 1,280 test samples showed improved legal reasoning compared to the base model: - **BLEU Score**: 0.126 (compared to base model's 0.121) - **ROUGE-L F-Score**: 0.304 ## Usage ### Using Transformers Library ```python from transformers import pipeline, AutoTokenizer # Load tokenizer and create pipeline tokenizer = AutoTokenizer.from_pretrained("saicharan1010/SmolLM2-FT-legal-india") pipe = pipeline("text-generation", model="saicharan1010/SmolLM2-FT-legal-india") # Format with chat template prompt = "Can a Vakalatnama be revoked or withdrawn in India?" messages = [{"role": "user", "content": prompt}] formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False) # Generate response response = pipe(formatted_prompt, max_new_tokens=200) print(response[0]['generated_text']) ``` This model is specifically optimized for legal language tasks in the Indian context. It shows improved understanding of Indian legal terminology and concepts compared to the base model. ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.13.0 - Transformers: 4.48.1 - Pytorch: 2.6.0.dev20241224+cu126 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouĆ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```