---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: skops-b2ie2xry.pkl
widget:
- structuredData:
Age:
- -0.7989508220667412
- -0.021264850777441783
- -0.3128970900109291
EstimatedSalary:
- 0.4946075830589406
- -0.5773590622674106
- 0.14694272511525913
example_title: social-network-ads
datasets:
- saifhmb/social-network-ads
---
# Model description
This is a logistic regression classifier trained on social network ads dataset (https://huggingface.co/datasets/saifhmb/social-network-ads).
## Intended uses & limitations
[More Information Needed]
## Training Procedure
The preprocesing steps include using a train/test split ratio of 80/20 and applying feature scaling on all the features.
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|-------------------|---------|
| C | 1.0 |
| class_weight | |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1 |
| l1_ratio | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | l2 |
| random_state | |
| solver | lbfgs |
| tol | 0.0001 |
| verbose | 0 |
| warm_start | False |
LogisticRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression()