dreamerdeo commited on
Commit
0335fff
·
verified ·
1 Parent(s): b44b160

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -0
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ - id
6
+ - th
7
+ - vi
8
+ - ms
9
+ - lo
10
+ datasets:
11
+ - CohereForAI/aya_dataset
12
+ - CohereForAI/aya_collection
13
+ - Open-Orca/OpenOrca
14
+ - HuggingFaceH4/ultrachat_200k
15
+ - openbmb/UltraFeedback
16
+ tags:
17
+ - multilingual
18
+ - sea
19
+ - sailor
20
+ - sft
21
+ - chat
22
+ - instruction
23
+ widget:
24
+ - text: "如何制作烤鱼?"
25
+ example_title: "Chinese"
26
+ - text: "How to bake fish?"
27
+ example_title: "English"
28
+ - text: "Bagaimana cara memanggang ikan?"
29
+ example_title: "Malay"
30
+ - text: "วิธีย่างปลา?"
31
+ example_title: "Thai"
32
+ - text: "Bagaimana membuat bakaran ikan?"
33
+ example_title: "Indonesian"
34
+ - text: "Làm thế nào để nướng cá?"
35
+ example_title: "Vietnamese"
36
+ license: apache-2.0
37
+ base_model: sail/Sailor-14B
38
+ ---
39
+
40
+ <div align="center">
41
+ <img src="banner_sailor.jpg" width="700"/>
42
+ </div>
43
+
44
+ Sailor is a suite of Open Language Models tailored for South-East Asia (SEA), focusing on languages such as 🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
45
+ Developed with careful data curation, Sailor models are designed to understand and generate text across diverse linguistic landscapes of SEA region.
46
+ Built from [Qwen 1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) , Sailor encompasses models of varying sizes, spanning from 0.5B to 14B versions for different requirements.
47
+ We further fine-tune the base model with open-source datasets to get instruction-tuned models, namedly Sailor-Chat.
48
+ Benchmarking results demonstrate Sailor's proficiency in tasks such as question answering, commonsense reasoning, and other tasks in SEA languages.
49
+
50
+ > The logo was generated by MidJourney
51
+
52
+ ## Model Summary
53
+ - **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor-65e19a749f978976f1959825)
54
+ - **Project Website:** [sailorllm.github.io](https://sailorllm.github.io/)
55
+ - **Codebase:** [github.com/sail-sg/sailor-llm](https://github.com/sail-sg/sailor-llm)
56
+ - **Technical Report:** [arxiv.org/pdf/2404.03608.pdf](https://arxiv.org/pdf/2404.03608.pdf)
57
+
58
+
59
+ ## Training details
60
+ Sailor is crafted by continually pre-training from language models like the remarkable Qwen 1.5 models, which already has a great performance on SEA languages.
61
+ The pre-training corpus heavily leverages the publicly available corpus, including
62
+ [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B),
63
+ [SkyPile](https://huggingface.co/datasets/Skywork/SkyPile-150B),
64
+ [CC100](https://huggingface.co/datasets/cc100) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400).
65
+ The instruction tuning corpus are all publicly available including
66
+ [aya_collection](https://huggingface.co/datasets/CohereForAI/aya_collection),
67
+ [aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset),
68
+ [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca),
69
+ [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k),
70
+ [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback).
71
+
72
+ By employing aggressive data deduplication and careful data cleaning on the collected corpus, we have attained a high-quality dataset spanning various languages.
73
+ Through systematic experiments to determine the weights of different languages, Sailor models undergo training from 200B to 400B tokens, tailored to different model sizes.
74
+ The approach boosts their performance on SEA languages while maintaining proficiency in English and Chinese without significant compromise.
75
+ Finally, we continually pre-train the Qwen1.5-0.5B model with 400 Billion tokens, and other models with 200 Billion tokens to obtain the Sailor models.
76
+
77
+ ## Requirements
78
+ The code of Sailor has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`.
79
+
80
+ ## Quickstart
81
+
82
+ Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
83
+
84
+ ```python
85
+ from transformers import AutoModelForCausalLM, AutoTokenizer
86
+ device = "cuda"
87
+
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ 'sail/Sailor-7B-Chat',
90
+ torch_dtype="auto",
91
+ device_map="auto"
92
+ )
93
+
94
+ tokenizer = AutoTokenizer.from_pretrained('sail/Sailor-14B-Chat')
95
+ system_prompt= 'You are an AI assistant named Sailor created by Sea AI Lab. As an AI assistant, you need to answer a series of questions next, which may include languages such as English, Chinese, Thai, Vietnamese, Indonesian, Malay, and so on. Your answer should be friendly, unbiased, faithful, informative and detailed.'
96
+
97
+ prompt = "Beri saya pengenalan singkat tentang model bahasa besar."
98
+ # prompt = "Hãy cho tôi một giới thiệu ngắn gọn về mô hình ngôn ngữ lớn."
99
+ # prompt = "ให้ฉันแนะนำสั้น ๆ เกี่ยวกับโมเดลภาษาขนาดใหญ่"
100
+
101
+ messages = [
102
+ {"role": "system", "content": system_prompt},
103
+ {"role": "assistant", "content": prompt}
104
+ ]
105
+ text = tokenizer.apply_chat_template(
106
+ messages,
107
+ tokenize=False,
108
+ add_generation_prompt=True
109
+ )
110
+
111
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
112
+ input_ids = model_inputs.input_ids.to(device)
113
+
114
+ generated_ids = model.generate(
115
+ input_ids,
116
+ max_new_tokens=512,
117
+ )
118
+
119
+ generated_ids = [
120
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
121
+ ]
122
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
123
+ print(response)
124
+ ```
125
+
126
+ # License
127
+
128
+ Sailor is distributed under the terms of the Apache License 2.0.
129
+ No restrict on the research and the commercial use, but should comply with the [Qwen License](https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE).
130
+
131
+ ## Citation
132
+
133
+ If you find sailor useful, please cite our work as follows:
134
+
135
+ ```
136
+ @misc{dou2024sailor,
137
+ title={Sailor: Open Language Models for South-East Asia},
138
+ author={Longxu Dou and Qian Liu and Guangtao Zeng and Jia Guo and Jiahui Zhou and Wei Lu and Min Lin},
139
+ year={2024},
140
+ eprint={2404.03608},
141
+ archivePrefix={arXiv},
142
+ primaryClass={cs.CL}
143
+ }
144
+ ```
145
+
146
+ # Contact Us
147
+
148
+ If you have any questions, please raise an issue or contact us at [doulx@sea.com](mailto:doulx@sea.com) or [liuqian@sea.com](mailto:liuqian@sea.com).