File size: 4,176 Bytes
d490b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c0fe6
 
ebfe44c
d490b4d
 
92c0fe6
d490b4d
 
 
 
 
 
92c0fe6
 
 
 
 
 
 
 
d490b4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
language:
- en
- zh
- id
- th
- vi
- ms
- lo
- my
- jv
- km
- su
- tl
tags:
- multilingual
- sea
- sailor
- sft
- chat
- instruction
widget:
- text: 如何制作烤鱼?
  example_title: Chinese
- text: How to bake fish?
  example_title: English
- text: Bagaimana cara memanggang ikan?
  example_title: Malay
- text: วิธีย่างปลา?
  example_title: Thai
- text: Bagaimana membuat bakaran ikan?
  example_title: Indonesian
- text: Làm thế nào để nướng cá?
  example_title: Vietnamese
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B
---

<div align="center">
  <img src="sailor2_banner.jpg" width="700"/>
</div>

> The logo was generated by MidJourney

Sailor2 is a community-driven initiative that brings cutting-edge multilingual language models to South-East Asia (SEA). 
Our research highlights a strong demand for models in the **8B and 20B parameter** range for production use, alongside **1B models** for specialized applications, 
such as speculative decoding and research purposes. 
These models, released under the **Apache 2.0 license**, provide enhanced accessibility to advanced language technologies across the region.


Sailor2 builds upon the foundation of the awesome multilingual model [Qwen 2.5](https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e) and 
is continuously pre-trained on **500B tokens** to support **15 languages** better with a unified model. 
These languages include English, Chinese, Burmese, Cebuano, Ilocano, Indonesian, Javanese, Khmer, Lao, Malay, Sundanese, Tagalog, Thai, Vietnamese, and Waray. 
By addressing the growing demand for diverse, robust, and accessible language models, Sailor2 seeks to serve the underserved in SEA areas with open, inclusive, and accessible multilingual LLMs.
The Sailor2 model comes in three sizes, 1B, 8B, and 20B, which are **expanded from the Qwen2.5 base models** of 0.5B, 7B, and 14B, respectively. 

## Model Summary
- **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor2-language-models-674d7c9e6b4dbbd9a869906b)
- **Project Website:** [sailorllm.github.io/blog/sailor2](https://sailorllm.github.io/blog/sailor2)
- **Codebase:** [github.com/sail-sg/sailor2](https://github.com/sail-sg/sailor2)
- **Technical Report:** Coming Soon


## Training details

During development, we employ a range of advanced technologies to ensure top-tier performance and efficiency:

1. model expansion
2. optimized data mixing strategies 
3. multi-stage pre-training protocols 
4. advanced multilingual post-training



## Requirements
The code of Sailor2 has been in the latest Hugging face transformers and we advise you to install `transformers==4.46.3`.

### Quickstart

Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model

model = AutoModelForCausalLM.from_pretrained("sail/Sailor2-8B", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("sail/Sailor2-8B")

input_message = "Model bahasa adalah model probabilistik" 
### The given Indonesian input translates to 'A language model is a probabilistic model of.'

model_inputs = tokenizer([input_message], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=64
)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

# License

Sailor2 is distributed under the terms of the Apache License 2.0. 
No restrict on the research and the commercial use.

## Citation

If you find Sailor2 useful, please cite our work as follows:

```
@misc{sailor2report,
  title={Sailor2: Sailing in South-East Asia with Inclusive Multilingual LLM},
  author={Sailor2 Team},
  year={2024}
}
```

# Contact Us

If you have any questions, please raise an issue or contact us at [doulx@sea.com](mailto:doulx@sea.com) or [liuqian.sea@gmail.com](mailto:liuqian.sea@gmail.com).