File size: 2,557 Bytes
cb69e53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from transformers import T5Tokenizer
from model import GPT

class Inference:
    def __init__(self, model_path, tokenizer_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
        self.device = device
        self.tokenizer = T5Tokenizer.from_pretrained(tokenizer_path)
        self.model = GPT(
            vocab_size=self.tokenizer.vocab_size,
            embed_size=1500,
            num_layers=20,
            heads=20,
            expansion_factor=4,
            dropout=0.1,
            max_length=1024
        )
        self.model.load_state_dict(torch.load(model_path, map_location=self.device))
        self.model.to(self.device)
        self.model.eval()

    def predict(self, text, max_length=100):
        input_ids = self.tokenizer.encode(text, return_tensors='pt').to(self.device)
        generated_tokens = set(input_ids[0].tolist())

        with torch.no_grad():
            for _ in range(max_length):
                outputs = self.model(input_ids)
                logits = outputs[:, -1, :] / 1.0  # temperature = 1.0

                for token_id in generated_tokens:
                    logits[0, token_id] /= 1.5  # repetition_penalty = 1.5

                filtered_logits = top_k_top_p_filtering(logits, top_k=50, top_p=0.9)
                probs = torch.softmax(filtered_logits, dim=-1)

                next_token_id = torch.multinomial(probs, 1)
                next_token_id = next_token_id.squeeze(-1).unsqueeze(0)
                input_ids = torch.cat([input_ids, next_token_id], dim=1)

                generated_tokens.add(next_token_id.item())

                if next_token_id.item() == self.tokenizer.eos_token_id:
                    break

        return self.tokenizer.decode(input_ids[0], skip_special_tokens=True)

def top_k_top_p_filtering(logits, top_k=0, top_p=0.9, filter_value=-float('Inf')):
    top_k = min(top_k, logits.size(-1))
    if top_k > 0:
        indices_to_remove = logits < torch.topk(logits, top_k).values[:, -1, None]
        logits[indices_to_remove] = filter_value

    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
    cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
    sorted_indices_to_remove = cumulative_probs > top_p

    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
    sorted_indices_to_remove[..., 0] = 0

    indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
    logits[indices_to_remove] = filter_value
    return logits