File size: 5,891 Bytes
dc49c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.utils.checkpoint import checkpoint

class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        mean_square = torch.mean(x ** 2, dim=-1, keepdim=True)
        normalized_x = x / torch.sqrt(mean_square + self.eps)
        return self.weight * normalized_x

class RotaryPositionalEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        max_len = x.size(1)
        freqs = torch.arange(0, self.dim // 2, dtype=torch.float32).to(x.device)
        inv_freq = 1.0 / (10000 ** (freqs / (self.dim // 2)))
        t = torch.arange(max_len, dtype=torch.float32).to(x.device)
        sinusoid_inp = torch.outer(t, inv_freq)
        sin_inp = sinusoid_inp.sin()
        cos_inp = sinusoid_inp.cos()
        emb_sin_cos = torch.stack((sin_inp, cos_inp), dim=-1).view(max_len, -1)
        return x + emb_sin_cos[:max_len, :self.dim].unsqueeze(0)

def apply_rotary_emb(xq, xk, freqs_cis):
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

def reshape_for_broadcast(freqs_cis, x):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

class SwiGLU(nn.Module):
    def __init__(self, embed_size, expansion_factor=4):
        super().__init__()
        self.fc1 = nn.Linear(embed_size, expansion_factor * embed_size)
        self.fc2 = nn.Linear(expansion_factor * embed_size, embed_size)
        self.dropout = nn.Dropout(0.1)

    def forward(self, x):
        x = self.fc1(x)
        x = F.silu(x) * x
        x = self.dropout(x)
        x = self.fc2(x)
        return x

class SelfAttention(nn.Module):
    def __init__(self, embed_size, heads):
        super().__init__()
        self.embed_size = embed_size
        self.heads = heads
        self.head_dim = embed_size // heads

        assert embed_size % heads == 0, "Embed size must be divisible by heads"

        self.values = nn.Linear(embed_size, embed_size, bias=False)
        self.keys = nn.Linear(embed_size, embed_size, bias=False)
        self.queries = nn.Linear(embed_size, embed_size, bias=False)
        self.fc_out = nn.Linear(embed_size, embed_size)

    def forward(self, values, keys, queries, mask=None):
        N = queries.shape[0]
        value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]

        values = self.values(values).view(N, value_len, self.heads, self.head_dim).transpose(1, 2)
        keys = self.keys(keys).view(N, key_len, self.heads, self.head_dim).transpose(1, 2)
        queries = self.queries(queries).view(N, query_len, self.heads, self.head_dim).transpose(1, 2)

        energy = torch.einsum("bthd,bshd->bhts", [queries, keys])

        if mask is not None:
            energy = energy.masked_fill(mask == 0, float('-inf'))

        attention = torch.softmax(energy / (self.head_dim ** 0.5), dim=-1)

        out = torch.einsum("bhts,bshd->bthd", [attention, values]).transpose(1, 2).reshape(N, query_len, self.embed_size)
        return self.fc_out(out)

class TransformerBlock(nn.Module):
    def __init__(self, embed_size, heads, expansion_factor=4, dropout=0.1, checkpoint=False):
        super().__init__()
        self.attention = SelfAttention(embed_size, heads)
        self.feed_forward = SwiGLU(embed_size, expansion_factor)
        self.norm1 = RMSNorm(embed_size)
        self.norm2 = RMSNorm(embed_size)
        self.rotary_pos_emb = RotaryPositionalEmbedding(embed_size)
        self.checkpoint = checkpoint

    def forward(self, value, mask=None):
        def forward_fn(value, mask):
            value = self.rotary_pos_emb(value)
            attention = self.attention(value, value, value, mask)
            x = self.norm1(attention + value)
            forward = self.feed_forward(x)
            out = self.norm2(forward + x)
            return out

        if self.checkpoint:
            return checkpoint(forward_fn, value, mask)
        else:
            return forward_fn(value, mask)

class GPT(nn.Module):
    def __init__(self, vocab_size, embed_size, num_layers, heads, max_length, expansion_factor=4, dropout=0.1, checkpoint=False):
        super().__init__()
        self.word_embedding = nn.Embedding(vocab_size, embed_size)
        self.position_embedding = nn.Embedding(max_length, embed_size)

        self.src_vocab_size = vocab_size

        self.layers = nn.ModuleList(
            [TransformerBlock(embed_size, heads, expansion_factor, dropout, checkpoint)
             for _ in range(num_layers)]
        )
        self.norm = RMSNorm(embed_size)
        self.fc_out = nn.Linear(embed_size, vocab_size)

    def forward(self, x, mask=None):
        positions = torch.arange(0, x.size(1)).unsqueeze(0).to(x.device)
        x = self.word_embedding(x) + self.position_embedding(positions)

        for layer in self.layers:
            x = layer(x, mask)

        x = self.norm(x)
        return self.fc_out(x)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = GPT(vocab_size=10000, embed_size=768, num_layers=20, heads=16, max_length=512, checkpoint=True)
model.to(device)

inputs = torch.randint(0, 10000, (1, 100), device=device)
outputs = model(inputs)
print(outputs.shape)  # Should output: [1, 100, 10000]