Upload pipeline.py
Browse files- pipeline.py +220 -0
pipeline.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionPipelineOutput
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
|
6 |
+
class MyPipeline(StableDiffusionPipeline):
|
7 |
+
@torch.no_grad()
|
8 |
+
def __call__(
|
9 |
+
self,
|
10 |
+
prompt: Union[str, List[str]] = None,
|
11 |
+
height: Optional[int] = None,
|
12 |
+
width: Optional[int] = None,
|
13 |
+
num_inference_steps: int = 50,
|
14 |
+
guidance_scale: float = 7.5,
|
15 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
16 |
+
num_images_per_prompt: Optional[int] = 1,
|
17 |
+
eta: float = 0.0,
|
18 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
19 |
+
latents: Optional[torch.FloatTensor] = None,
|
20 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
21 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
22 |
+
output_type: Optional[str] = "pil",
|
23 |
+
return_dict: bool = True,
|
24 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
25 |
+
callback_steps: int = 1,
|
26 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
27 |
+
########
|
28 |
+
image_saving_kwargs: Optional[Dict[str, Any]] = None,
|
29 |
+
|
30 |
+
):
|
31 |
+
r"""
|
32 |
+
Function invoked when calling the pipeline for generation.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
prompt (`str` or `List[str]`, *optional*):
|
36 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
37 |
+
instead.
|
38 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
39 |
+
The height in pixels of the generated image.
|
40 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
41 |
+
The width in pixels of the generated image.
|
42 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
43 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
44 |
+
expense of slower inference.
|
45 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
46 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
47 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
48 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
49 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
50 |
+
usually at the expense of lower image quality.
|
51 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
52 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
53 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
54 |
+
less than `1`).
|
55 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
56 |
+
The number of images to generate per prompt.
|
57 |
+
eta (`float`, *optional*, defaults to 0.0):
|
58 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
59 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
60 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
61 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
62 |
+
to make generation deterministic.
|
63 |
+
latents (`torch.FloatTensor`, *optional*):
|
64 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
65 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
66 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
67 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
68 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
69 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
70 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
71 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
72 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
73 |
+
argument.
|
74 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
75 |
+
The output format of the generate image. Choose between
|
76 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
77 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
79 |
+
plain tuple.
|
80 |
+
callback (`Callable`, *optional*):
|
81 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
82 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
83 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
84 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
85 |
+
called at every step.
|
86 |
+
cross_attention_kwargs (`dict`, *optional*):
|
87 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
88 |
+
`self.processor` in
|
89 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
90 |
+
|
91 |
+
Examples:
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
95 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
96 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
97 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
98 |
+
(nsfw) content, according to the `safety_checker`.
|
99 |
+
"""
|
100 |
+
# 0. Default height and width to unet
|
101 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
102 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
103 |
+
|
104 |
+
# 1. Check inputs. Raise error if not correct
|
105 |
+
self.check_inputs(
|
106 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
107 |
+
)
|
108 |
+
|
109 |
+
# 2. Define call parameters
|
110 |
+
if prompt is not None and isinstance(prompt, str):
|
111 |
+
batch_size = 1
|
112 |
+
elif prompt is not None and isinstance(prompt, list):
|
113 |
+
batch_size = len(prompt)
|
114 |
+
else:
|
115 |
+
batch_size = prompt_embeds.shape[0]
|
116 |
+
|
117 |
+
device = self._execution_device
|
118 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
119 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
120 |
+
# corresponds to doing no classifier free guidance.
|
121 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
122 |
+
|
123 |
+
# 3. Encode input prompt
|
124 |
+
prompt_embeds = self._encode_prompt(
|
125 |
+
prompt,
|
126 |
+
device,
|
127 |
+
num_images_per_prompt,
|
128 |
+
do_classifier_free_guidance,
|
129 |
+
negative_prompt,
|
130 |
+
prompt_embeds=prompt_embeds,
|
131 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
132 |
+
)
|
133 |
+
|
134 |
+
# 4. Prepare timesteps
|
135 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
136 |
+
timesteps = self.scheduler.timesteps
|
137 |
+
|
138 |
+
# 5. Prepare latent variables
|
139 |
+
num_channels_latents = self.unet.config.in_channels
|
140 |
+
latents = self.prepare_latents(
|
141 |
+
batch_size * num_images_per_prompt,
|
142 |
+
num_channels_latents,
|
143 |
+
height,
|
144 |
+
width,
|
145 |
+
prompt_embeds.dtype,
|
146 |
+
device,
|
147 |
+
generator,
|
148 |
+
latents,
|
149 |
+
)
|
150 |
+
|
151 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
152 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
153 |
+
|
154 |
+
# 7. Denoising loop
|
155 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
156 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
157 |
+
for i, t in enumerate(timesteps):
|
158 |
+
# expand the latents if we are doing classifier free guidance
|
159 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
160 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
161 |
+
|
162 |
+
# predict the noise residual
|
163 |
+
noise_pred = self.unet(
|
164 |
+
latent_model_input,
|
165 |
+
t,
|
166 |
+
encoder_hidden_states=prompt_embeds,
|
167 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
168 |
+
).sample
|
169 |
+
|
170 |
+
# perform guidance
|
171 |
+
if do_classifier_free_guidance:
|
172 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
173 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
174 |
+
|
175 |
+
# compute the previous noisy sample x_t -> x_t-1
|
176 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
177 |
+
####################################################################################################
|
178 |
+
####################################################################################################
|
179 |
+
if image_saving_kwargs:
|
180 |
+
if image_saving_kwargs.get('save_denoising_images'):
|
181 |
+
image = self.decode_latents(latents)
|
182 |
+
image = self.numpy_to_pil(image)
|
183 |
+
StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None).images[0].save(image_saving_kwargs['save_denoising_path'] + '_t_' + str(i) + '.png')
|
184 |
+
|
185 |
+
####################################################################################################
|
186 |
+
####################################################################################################
|
187 |
+
|
188 |
+
# call the callback, if provided
|
189 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
190 |
+
progress_bar.update()
|
191 |
+
if callback is not None and i % callback_steps == 0:
|
192 |
+
callback(i, t, latents)
|
193 |
+
|
194 |
+
if output_type == "latent":
|
195 |
+
image = latents
|
196 |
+
has_nsfw_concept = None
|
197 |
+
elif output_type == "pil":
|
198 |
+
# 8. Post-processing
|
199 |
+
image = self.decode_latents(latents)
|
200 |
+
|
201 |
+
# 9. Run safety checker
|
202 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
203 |
+
|
204 |
+
# 10. Convert to PIL
|
205 |
+
image = self.numpy_to_pil(image)
|
206 |
+
else:
|
207 |
+
# 8. Post-processing
|
208 |
+
image = self.decode_latents(latents)
|
209 |
+
|
210 |
+
# 9. Run safety checker
|
211 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
212 |
+
|
213 |
+
# Offload last model to CPU
|
214 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
215 |
+
self.final_offload_hook.offload()
|
216 |
+
|
217 |
+
if not return_dict:
|
218 |
+
return (image, has_nsfw_concept)
|
219 |
+
|
220 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|