--- license: apache-2.0 datasets: - sajaw/Arasquad3_llama2_version2 - sajaw/GQA_llama2_version language: - ar metrics: - bertscore pipeline_tag: question-answering --- # Model Card for Model ID This model is an LoRA adapter file from finetuned Llama-2-7b-hf model. This is an experimental model. To run it, you need to: Agree with Meta's agreements to download the Llama-2-13b-chat-hf model from here: https://huggingface.co/meta-llama/Llama-2-13b-chat-hf Clone this repository Clone the Alpaca-LoRA repository from here: https://github.com/tloen/alpaca-lora Use this command to run it: -python generate.py --load_8bit --base_model 'PATH_TO_YOUR_LOCAL_LLAMA_2_7B_CHAT_HF' --lora_weights 'PATH_TO_YOUR_LOCAL_FILE_OF_THIS_MODEL' You must agree with Meta/Llama-2's agreements to use this model. ## Model Details ### Model Description - **Developed by:** Saja Nakhleh - **Model type:** Question answering model - **Language(s) (NLP):** Arabic - **Finetuned from model [optional]:** llama-2-7b ### Model Sources [optional] - **Paper [optional]:** Not Yet ## Bias, Risks, and Limitations This model performs well with hetrogenius data. ### Recommendations None ## How to Get Started with the Model Use the code below to get started with the model. from transformers import AutoConfig, AutoModel, AutoTokenizer config = AutoConfig.from_pretrained("sajaw/llama-2-7b-RandomGPT-5K-ar") model = AutoModel.from_pretrained("sajaw/llama-2-7b-RandomGPT-5K-ar") tokenizer = AutoTokenizer.from_pretrained("sajaw/llama-2-7b-RandomGPT-5K-ar") ## Training Details ### Training Data - sajaw/Arasquad3_llama2_version2 - sajaw/GQA_llama2_version #### Preprocessing [optional] Context, questions and answers are concatinated with the instructions in one "message" record #### Training Hyperparameters - **Training regime:** NA #### Speeds, Sizes, Times [optional] NA ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data We have used 250 samples from AraSquad as true samples to test the model #### Factors NA #### Metrics F1-score, precision, recall ### Results F1-score= 0.6818 precision= 0.6564 recall=0.7226 #### Summary ## Model Examination [optional] NA ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** kaggle - GPU T4 *2 - **Hours used:** 9 hours - **Cloud Provider:** kaggle - **Compute Region:** NA - **Carbon Emitted:** NA ## Technical Specifications [optional] ### Model Architecture and Objective NA ### Compute Infrastructure NA #### Hardware NA #### Software NA ## Citation [optional] **BibTeX:** **APA:** ## Glossary [optional] NA ## More Information [optional] NA ## Model Card Authors [optional] Saja Nakhleh ## Model Card Contact swnakhleh21@cit.just.edu.jo