from txtai.pipeline import Labels class InstructionClassifier: def __init__(self): # Initialize the labels model self.labels = Labels('facebook/bart-large-mnli') self.tags = [ "Programming", "Factual", "Creative Writing", "Roleplaying" ] self.tools_labels = ["Real Time Information needed: Available in Internet", "Historic Information needed: Available in Wikipedia", "Sufficient Information"] def classify_instructions(self, data): result = [] for text in data: # Predict tags tag_labels_result = self.labels(text, self.tags) tag_label = self.tags[tag_labels_result[0][0]] if tag_labels_result[0][0] < len(self.tags) else "Unknown" tool_labels_result = self.labels(text, self.tools_labels) tool_label = self.tools_labels[tool_labels_result[0][0]] if tool_labels_result[0][0] < len(self.tools_labels) else "Unknown" result.append((text, tag_label, tool_label)) return result # Usage classifier = InstructionClassifier()