salil-malhotra's picture
Upload PPO LunarLander-v2 trained agent
497789f
raw
history blame
14.5 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x0000012B49ED34C0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000012B49ED3550>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000012B49ED35E0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000012B49ED3670>",
"_build": "<function ActorCriticPolicy._build at 0x0000012B49ED3700>",
"forward": "<function ActorCriticPolicy.forward at 0x0000012B49ED3790>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000012B49ED3820>",
"_predict": "<function ActorCriticPolicy._predict at 0x0000012B49ED38B0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000012B49ED3940>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000012B49ED39D0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x0000012B49ED3A60>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x0000012B49ED2180>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
"n": 4,
"shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 524288,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652209880.4233577,
"learning_rate": 0.0002,
"tensorboard_log": "tmp/",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPyo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDK6D2Fk6W58+gXvBGomrq7dUg7DD2SuwAAAAAAAIA/TcoGPQIBsj+NDSE+pLKAvo8AXjzSJ8w9AAAAAAAAAAAz+748j8oDui1TQjw2BM68+t6AuwTLGr0AAAAAAAAAAC3+LT4KuKg/Xh7/PltF/77+8yE+3FsXPgAAAAAAAAAAAHqtPezR/7lsJoi7BsM5ubFLgbsL6Kw4AACAPwAAgD/987i+j5VCP7BnuD3dvBq/fme/vnyBkz4AAAAAAAAAADPTzzrwT4s+Tj4+PkAp57497tI8W13UPQAAAAAAAAAAZp6svOHa/jlmNMc7ZXqDNqm+DrvUfI41AACAPwAAgD+AM/291Ii3P2KBJb/8cR6+skL3vYhJ374AAAAAAAAAAIDvpD5RiRm9RY75vPc8KrwlNEq+kDP5OgAAgD8AAIA/mvpBPZHDpT+uhY4+0Yb/vhvbXD00EhE+AAAAAAAAAACmfqc9sA2dP1OF+j4ekBi/parhvHxgTD0AAAAAAAAAAFqAnz1c/0i6kjblPBZmL72r6p27qO0GvQAAAAAAAAAAoLHPPiT1X70jafs9pYkmvg2Rib3RyoY/AACAPwAAAAADB9w+4UwRvQQvoz0M7BM7fvxtvVxWDz0AAIA/AACAP2Y57DzhVsq8laYKvZQagD0U/Y68oFOivAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI16NwPQq7MECUhpRSlIwBbJRLmIwBdJRHQHlzjh1klNV1fZQoaAZoCWgPQwg6kst/SJ8TQJSGlFKUaBVLoWgWR0B5eRJYkmhNdX2UKGgGaAloD0MIyjMvh92rRkCUhpRSlGgVS4ZoFkdAeX3DLKV6eHV9lChoBmgJaA9DCHwOLEfImDdAlIaUUpRoFUuRaBZHQHmIQHRkVet1fZQoaAZoCWgPQwjRyVLr/cbnv5SGlFKUaBVLgmgWR0B5iTmknCwbdX2UKGgGaAloD0MINZvHYTAVS0CUhpRSlGgVS7JoFkdAepIHOKO1fHV9lChoBmgJaA9DCJ8ENufgy0dAlIaUUpRoFUtjaBZHQHqV5QxesxR1fZQoaAZoCWgPQwhlqIqpdNliQJSGlFKUaBVN6ANoFkdAepapIMBp6HV9lChoBmgJaA9DCHNoke18c05AlIaUUpRoFUuOaBZHQHqaVRceKbd1fZQoaAZoCWgPQwgjoS3nUtZHQJSGlFKUaBVLZWgWR0B6n+vStvGZdX2UKGgGaAloD0MILQYP077lN0CUhpRSlGgVS4ZoFkdAeqgv4/NZ/3V9lChoBmgJaA9DCOC+DpwzKiFAlIaUUpRoFU3oA2gWR0B6sivzOHFhdX2UKGgGaAloD0MIFva0w18vM0CUhpRSlGgVS4xoFkdAerOv2GqPwXV9lChoBmgJaA9DCB3nNuFeh1BAlIaUUpRoFU3oA2gWR0B6toRIz3yqdX2UKGgGaAloD0MIpMLYQpAD6D+UhpRSlGgVS55oFkdAeruupCKJmHV9lChoBmgJaA9DCPwcHy3O6BPAlIaUUpRoFUtpaBZHQHq+AC8vmHR1fZQoaAZoCWgPQwjb+BOVDXFJQJSGlFKUaBVLhWgWR0B60CuyNXHSdX2UKGgGaAloD0MIRiV1ApocS0CUhpRSlGgVS5NoFkdAetGDCgsbvXV9lChoBmgJaA9DCPJ376gx4QTAlIaUUpRoFUuOaBZHQHrVnhbW3Bp1fZQoaAZoCWgPQwhqvHSTGLREQJSGlFKUaBVLlWgWR0B64EtoSL62dX2UKGgGaAloD0MIIuLmVDIIO0CUhpRSlGgVS39oFkdAevEAKv3ajHV9lChoBmgJaA9DCLfsEP+wJmBAlIaUUpRoFU3oA2gWR0B69lCAtnPFdX2UKGgGaAloD0MIB7KeWn1zTUCUhpRSlGgVTegDaBZHQHr4ao/A0sR1fZQoaAZoCWgPQwhZbJOKxr5JQJSGlFKUaBVLkGgWR0B6+hbr1M/RdX2UKGgGaAloD0MIe6TBbW0pXUCUhpRSlGgVTegDaBZHQHr76+vhZQp1fZQoaAZoCWgPQwjCvTJv1TtJQJSGlFKUaBVLfGgWR0B6/4izLOiWdX2UKGgGaAloD0MIU82spYAwXUCUhpRSlGgVTegDaBZHQHsKkYbbUPR1fZQoaAZoCWgPQwi1wYno1zYtQJSGlFKUaBVLdWgWR0B7FemdiDujdX2UKGgGaAloD0MIpDUGnRDETECUhpRSlGgVS5JoFkdAexaImw7kn3V9lChoBmgJaA9DCPPlBdhHnUFAlIaUUpRoFUtzaBZHQHsZayGBWgh1fZQoaAZoCWgPQwjedqG5TkNIQJSGlFKUaBVLi2gWR0B7GasQumJndX2UKGgGaAloD0MIo6zfTEwJTkCUhpRSlGgVS4JoFkdAextBvrGBF3V9lChoBmgJaA9DCJkQc0nVSENAlIaUUpRoFUuVaBZHQHsmun/DLr51fZQoaAZoCWgPQwjMRBFSt71FQJSGlFKUaBVLk2gWR0B7MLqGDcubdX2UKGgGaAloD0MITdnpB3VZJsCUhpRSlGgVS39oFkdAezrthNM4+HV9lChoBmgJaA9DCGGOHr+3mUNAlIaUUpRoFUuZaBZHQHs+4EwFkhB1fZQoaAZoCWgPQwi++njou4spQJSGlFKUaBVLmGgWR0B7P2lsP8Q7dX2UKGgGaAloD0MIrgyqDU74PkCUhpRSlGgVS5FoFkdAe0IxagVXWHV9lChoBmgJaA9DCMFWCRaHtVJAlIaUUpRoFU3oA2gWR0B7Q7hisny/dX2UKGgGaAloD0MIfc7drpeBY0CUhpRSlGgVTegDaBZHQHtGzpLVWjp1fZQoaAZoCWgPQwh1BHCzeAhdQJSGlFKUaBVN6ANoFkdAe1p2UjcEeXV9lChoBmgJaA9DCNrlWx/WdzXAlIaUUpRoFUuIaBZHQHtcs2m51/51fZQoaAZoCWgPQwi7tOGwNChHQJSGlFKUaBVLb2gWR0B7XmCnP3SKdX2UKGgGaAloD0MI+mAZG7oVN0CUhpRSlGgVS4doFkdAe2LixFAmiXV9lChoBmgJaA9DCK62Yn/ZHllAlIaUUpRoFU3oA2gWR0B7ZICih37ldX2UKGgGaAloD0MIILOz6J2eNECUhpRSlGgVS5xoFkdAe2XWluWKM3V9lChoBmgJaA9DCApmTMEahx1AlIaUUpRoFUuiaBZHQHtm9lAeJYV1fZQoaAZoCWgPQwjeOCnMe3QwQJSGlFKUaBVLn2gWR0B7bin/DLr5dX2UKGgGaAloD0MIYcPTK2X5JMCUhpRSlGgVS5BoFkdAe4KiG34KyHV9lChoBmgJaA9DCJFfP8QGrVxAlIaUUpRoFU3oA2gWR0B7iiZJCjUNdX2UKGgGaAloD0MIaydKQiKdLkCUhpRSlGgVS5loFkdAe4p9Brvb5HV9lChoBmgJaA9DCO0NvjCZ0iRAlIaUUpRoFUuIaBZHQHuP+TeO4oZ1fZQoaAZoCWgPQwidoE0On4hVQJSGlFKUaBVN6ANoFkdAe5D0h/y5JHV9lChoBmgJaA9DCFx0stR6tzbAlIaUUpRoFUuvaBZHQHuXmU0Nz8x1fZQoaAZoCWgPQwgw9IjRc+c7QJSGlFKUaBVLlWgWR0B7nLUaya/idX2UKGgGaAloD0MISpo/prXpPUCUhpRSlGgVTegDaBZHQHufeIMz/Id1fZQoaAZoCWgPQwhgBfhu8z4zQJSGlFKUaBVLb2gWR0B7stsHjZL7dX2UKGgGaAloD0MIWB050hkUSECUhpRSlGgVS4VoFkdAe7OjYqXnhnV9lChoBmgJaA9DCONuEK0VLSJAlIaUUpRoFUulaBZHQHu1peqrBCV1fZQoaAZoCWgPQwgQ6iKFsj9QwJSGlFKUaBVLcGgWR0B7uJHtnf2sdX2UKGgGaAloD0MI1V5E2zHlFsCUhpRSlGgVS41oFkdAe7ntvGZNPHV9lChoBmgJaA9DCAq8k0+P5VpAlIaUUpRoFU3oA2gWR0B7xGI1tO2zdX2UKGgGaAloD0MId78K8N2AQUCUhpRSlGgVS5VoFkdAe8aOCoS+QHV9lChoBmgJaA9DCNfCLLRzWvi/lIaUUpRoFUuKaBZHQHvVVaB7NSt1fZQoaAZoCWgPQwietHBZBUdhQJSGlFKUaBVN6ANoFkdAe9l+ee4Cp3V9lChoBmgJaA9DCI9Rnnk5OVNAlIaUUpRoFUudaBZHQHvbHARChOB1fZQoaAZoCWgPQwie6/twkGw8wJSGlFKUaBVLlGgWR0B72679Q40edX2UKGgGaAloD0MIoFT7dDxwRUCUhpRSlGgVS7BoFkdAe9zekpI+XHV9lChoBmgJaA9DCK+ZfLPNV0RAlIaUUpRoFUtzaBZHQHvgACwKSgZ1fZQoaAZoCWgPQwg5YFeTpww9QJSGlFKUaBVLWWgWR0B77kHY6GQCdX2UKGgGaAloD0MIo4/5gEAvSUCUhpRSlGgVS4hoFkdAe/PEuxrzoXV9lChoBmgJaA9DCBAiGXJs5ThAlIaUUpRoFUtqaBZHQHv5iprDZUV1fZQoaAZoCWgPQwiH4SNiSsQcQJSGlFKUaBVLimgWR0B7+b3AVO9GdX2UKGgGaAloD0MIGeYEbXKYG0CUhpRSlGgVS4JoFkdAe/qn/T9bYHV9lChoBmgJaA9DCGGMSBRasE9AlIaUUpRoFUuRaBZHQHwVd/e+Eh91fZQoaAZoCWgPQwgm/FI/b9RCQJSGlFKUaBVLcWgWR0B8F7fUF0PpdX2UKGgGaAloD0MI2zaMguDxC8CUhpRSlGgVS35oFkdAfBsF2mpEQXV9lChoBmgJaA9DCBfYYyKle0tAlIaUUpRoFUuFaBZHQHwex8IAwPB1fZQoaAZoCWgPQwju0RvuI9cpQJSGlFKUaBVN6ANoFkdAfCMryDqW1XV9lChoBmgJaA9DCCV0l8RZDlZAlIaUUpRoFU3oA2gWR0B8MZ8stkFwdX2UKGgGaAloD0MIvHZpw2ENX0CUhpRSlGgVTegDaBZHQHw95Ge+VTt1fZQoaAZoCWgPQwiQuwhTlB89QJSGlFKUaBVLkGgWR0B8P8Ippeu3dX2UKGgGaAloD0MI0J1g/3XOFsCUhpRSlGgVS4loFkdAfEBhew9q13V9lChoBmgJaA9DCBsN4C2QQB1AlIaUUpRoFUtyaBZHQHxFHoLXtjV1fZQoaAZoCWgPQwgLfEW3Xj85QJSGlFKUaBVLi2gWR0B8R7Fm4AjqdX2UKGgGaAloD0MIsTGvIw4BIsCUhpRSlGgVS3VoFkdAfGLa99MK1HV9lChoBmgJaA9DCDY7Un3nbUVAlIaUUpRoFUuBaBZHQHxobtzCDVZ1fZQoaAZoCWgPQwjWqfI9Iwk7QJSGlFKUaBVLlGgWR0B8b2l/H5rQdX2UKGgGaAloD0MIuFhRg2nJWUCUhpRSlGgVTegDaBZHQHx0nGS6lLx1fZQoaAZoCWgPQwhrRDAOLm04QJSGlFKUaBVLoGgWR0B8eC4z7/GVdX2UKGgGaAloD0MI/+kGCrx7QUCUhpRSlGgVS51oFkdAfHnBoVVPvnV9lChoBmgJaA9DCEvLSL2nOWFAlIaUUpRoFU3oA2gWR0B8fU0Jng5zdX2UKGgGaAloD0MIKv7viAqVVkCUhpRSlGgVTegDaBZHQHx+2D15B1N1fZQoaAZoCWgPQwi0qiUd5T5AQJSGlFKUaBVLf2gWR0B8iH/GVAzIdX2UKGgGaAloD0MImwDD8ue3R0CUhpRSlGgVS4loFkdAfI/9OymhunV9lChoBmgJaA9DCJUO1v85DE5AlIaUUpRoFUuhaBZHQHyc6gIyCWh1fZQoaAZoCWgPQwh4swbvq8heQJSGlFKUaBVN6ANoFkdAfKCXf642CXV9lChoBmgJaA9DCOWZl8PuLz1AlIaUUpRoFUt+aBZHQHyhaL4vexh1fZQoaAZoCWgPQwhPyTmxhxBIQJSGlFKUaBVLomgWR0B8oZx5s0pFdX2UKGgGaAloD0MIbt44KczrRkCUhpRSlGgVS5ZoFkdAfKGYZEUj9nVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 96,
"n_steps": 2048,
"gamma": 0.9995,
"gae_lambda": 0.99,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 48,
"n_epochs": 6,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"clip_range_vf": null,
"target_kl": null
}