--- base_model: qarib/bert-base-qarib tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: OTE-NoDapt-ABSA-bert-base-qarib-OrginalHP-FineTune results: [] --- # OTE-NoDapt-ABSA-bert-base-qarib-OrginalHP-FineTune This model is a fine-tuned version of [qarib/bert-base-qarib](https://huggingface.co/qarib/bert-base-qarib) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1348 - Precision: 0.7488 - Recall: 0.7723 - F1: 0.7604 - Accuracy: 0.9532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 25 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1656 | 1.0 | 61 | 0.1196 | 0.7299 | 0.7932 | 0.7603 | 0.9528 | | 0.08 | 2.0 | 122 | 0.1176 | 0.7561 | 0.7678 | 0.7619 | 0.9543 | | 0.0501 | 3.0 | 183 | 0.1348 | 0.7488 | 0.7723 | 0.7604 | 0.9532 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3