--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: XLMR_HASOC results: [] --- # XLMR_HASOC This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3081 - Accuracy: 0.6667 - F1: 0.6845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7501 | 1.0 | 2100 | 0.7108 | 0.6756 | 0.7065 | | 0.8911 | 2.0 | 4200 | 0.8944 | 0.6739 | 0.7022 | | 0.9043 | 3.0 | 6300 | 1.3081 | 0.6667 | 0.6845 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2