Samaksh Khatri
commited on
Commit
·
8fcfab7
1
Parent(s):
1044a0d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/bart-large-mnli
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: bart-large-mnli_17082023T115544
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# bart-large-mnli_17082023T115544
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4791
|
22 |
+
- Accuracy: 0.9394
|
23 |
+
- F1: 0.9528
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| No log | 1.0 | 142 | 0.2605 | 0.9095 | 0.9307 |
|
57 |
+
| No log | 2.0 | 284 | 0.2664 | 0.9183 | 0.9389 |
|
58 |
+
| No log | 2.99 | 426 | 0.2562 | 0.9315 | 0.9467 |
|
59 |
+
| 0.193 | 4.0 | 569 | 0.3992 | 0.9315 | 0.9458 |
|
60 |
+
| 0.193 | 5.0 | 711 | 0.4185 | 0.9315 | 0.9441 |
|
61 |
+
| 0.193 | 6.0 | 853 | 0.4918 | 0.9306 | 0.9462 |
|
62 |
+
| 0.193 | 6.99 | 995 | 0.4584 | 0.9385 | 0.9526 |
|
63 |
+
| 0.0101 | 8.0 | 1138 | 0.4611 | 0.9367 | 0.9503 |
|
64 |
+
| 0.0101 | 9.0 | 1280 | 0.4739 | 0.9385 | 0.9518 |
|
65 |
+
| 0.0101 | 9.98 | 1420 | 0.4791 | 0.9394 | 0.9528 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.31.0
|
71 |
+
- Pytorch 2.0.1+cu118
|
72 |
+
- Datasets 2.14.4
|
73 |
+
- Tokenizers 0.13.3
|