Samaksh Khatri commited on
Commit
8fcfab7
·
1 Parent(s): 1044a0d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: facebook/bart-large-mnli
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: bart-large-mnli_17082023T115544
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # bart-large-mnli_17082023T115544
18
+
19
+ This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4791
22
+ - Accuracy: 0.9394
23
+ - F1: 0.9528
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 2e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 32
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | No log | 1.0 | 142 | 0.2605 | 0.9095 | 0.9307 |
57
+ | No log | 2.0 | 284 | 0.2664 | 0.9183 | 0.9389 |
58
+ | No log | 2.99 | 426 | 0.2562 | 0.9315 | 0.9467 |
59
+ | 0.193 | 4.0 | 569 | 0.3992 | 0.9315 | 0.9458 |
60
+ | 0.193 | 5.0 | 711 | 0.4185 | 0.9315 | 0.9441 |
61
+ | 0.193 | 6.0 | 853 | 0.4918 | 0.9306 | 0.9462 |
62
+ | 0.193 | 6.99 | 995 | 0.4584 | 0.9385 | 0.9526 |
63
+ | 0.0101 | 8.0 | 1138 | 0.4611 | 0.9367 | 0.9503 |
64
+ | 0.0101 | 9.0 | 1280 | 0.4739 | 0.9385 | 0.9518 |
65
+ | 0.0101 | 9.98 | 1420 | 0.4791 | 0.9394 | 0.9528 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.31.0
71
+ - Pytorch 2.0.1+cu118
72
+ - Datasets 2.14.4
73
+ - Tokenizers 0.13.3