Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,103 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- open-thoughts/OpenThoughts-114k
|
5 |
+
language:
|
6 |
+
- ar
|
7 |
+
metrics:
|
8 |
+
- code_eval
|
9 |
+
base_model:
|
10 |
+
- deepseek-ai/DeepSeek-R1
|
11 |
+
new_version: deepseek-ai/DeepSeek-R1
|
12 |
+
library_name: adapter-transformers
|
13 |
+
tags:
|
14 |
+
- code
|
15 |
+
---
|
16 |
+
---
|
17 |
+
license: mit
|
18 |
+
---# Step 1: Install required libraries
|
19 |
+
!pip install transformers datasets torch sentencepiece
|
20 |
+
|
21 |
+
# Step 2: Import Libraries
|
22 |
+
from datasets import load_dataset
|
23 |
+
from transformers import MarianMTModel, MarianTokenizer
|
24 |
+
import torch
|
25 |
+
from transformers import Trainer, TrainingArguments
|
26 |
+
|
27 |
+
# Step 3: Load the Dataset
|
28 |
+
dataset = load_dataset(cfilt/iitb-engl"ish-hindi")
|
29 |
+
|
30 |
+
# Check the structure of the dataset
|
31 |
+
print(dataset)
|
32 |
+
|
33 |
+
# Step 4: Prepare Tokenizer and Model
|
34 |
+
model_name = "Helsinki-NLP/opus-mt-en-hi"
|
35 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
36 |
+
model = MarianMTModel.from_pretrained(model_name)
|
37 |
+
|
38 |
+
# Step 5: Preprocess the Dataset
|
39 |
+
def preprocess_function(examples):
|
40 |
+
# Tokenize the English input and Hindi target
|
41 |
+
model_inputs = tokenizer(examples["en"], truncation=True, padding="max_length", max_length=128)
|
42 |
+
# Tokenize the Hindi target for training
|
43 |
+
with tokenizer.as_target_tokenizer():
|
44 |
+
labels = tokenizer(examples["hi"], truncation=True, padding="max_length", max_length=128)
|
45 |
+
|
46 |
+
model_inputs["labels"] = labels["input_ids"]
|
47 |
+
return model_inputs
|
48 |
+
|
49 |
+
# Apply preprocessing to the dataset
|
50 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
51 |
+
|
52 |
+
# Step 6: Training the Model
|
53 |
+
training_args = TrainingArguments(
|
54 |
+
output_dir="./results", # output directory for results
|
55 |
+
evaluation_strategy="epoch", # evaluate after every epoch
|
56 |
+
learning_rate=2e-5, # learning rate
|
57 |
+
per_device_train_batch_size=16, # batch size for training
|
58 |
+
per_device_eval_batch_size=16, # batch size for evaluation
|
59 |
+
num_train_epochs=3, # number of training epochs
|
60 |
+
logging_dir="./logs", # directory for storing logs
|
61 |
+
save_steps=500, # save checkpoint every 500 steps
|
62 |
+
)
|
63 |
+
|
64 |
+
# Initialize the Trainer
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model, # the pre-trained model
|
67 |
+
args=training_args, # training arguments
|
68 |
+
train_dataset=tokenized_datasets["train"], # training dataset
|
69 |
+
eval_dataset=tokenized_datasets["validation"], # validation dataset
|
70 |
+
)
|
71 |
+
|
72 |
+
# Train the model
|
73 |
+
trainer.train()
|
74 |
+
|
75 |
+
# Step 7: Evaluate the Model
|
76 |
+
results = trainer.evaluate(tokenized_datasets["test"])
|
77 |
+
print("Evaluation Results:", results)
|
78 |
+
|
79 |
+
# Step 8: Translate Text Using the Model
|
80 |
+
def translate(texts):
|
81 |
+
# Tokenize the input English text
|
82 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
83 |
+
|
84 |
+
# Generate the translation (output of the model)
|
85 |
+
with torch.no_grad():
|
86 |
+
translated = model.generate(**inputs)
|
87 |
+
|
88 |
+
# Decode the generated ids back into text
|
89 |
+
translations = tokenizer.decode(translated[0], skip_special_tokens=True)
|
90 |
+
return translations
|
91 |
+
|
92 |
+
# Example translation
|
93 |
+
english_text = ["Hello, how are you?", "I am learning NLP."]
|
94 |
+
translations = translate(english_text)
|
95 |
+
print(translations)
|
96 |
+
|
97 |
+
# Step 9: Save the Model and Tokenizer
|
98 |
+
model.save_pretrained("./hindi_translation_model")
|
99 |
+
tokenizer.save_pretrained("./hindi_translation_tokenizer")
|
100 |
+
|
101 |
+
# Step 10: Load the model and tokenizer for future use
|
102 |
+
model = MarianMTModel.from_pretrained("./hindi_translation_model")
|
103 |
+
tokenizer = MarianTokenizer.from_pretrained("./hindi_translation_tokenizer")
|