File size: 2,517 Bytes
ca8816b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
base_model: google-t5/t5-base
datasets:
- Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
- rouge
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: t5-base-LoRA-TweetSumm-1724689228
results:
- task:
type: summarization
name: Summarization
dataset:
name: Andyrasika/TweetSumm-tuned
type: Andyrasika/TweetSumm-tuned
metrics:
- type: rouge
value: 0.4651
name: Rouge1
- type: f1
value: 0.8924
name: F1
- type: precision
value: 0.8906
name: Precision
- type: recall
value: 0.8943
name: Recall
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-LoRA-TweetSumm-1724689228
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on the Andyrasika/TweetSumm-tuned dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7954
- Rouge1: 0.4651
- Rouge2: 0.218
- Rougel: 0.3904
- Rougelsum: 0.4291
- Gen Len: 41.8818
- F1: 0.8924
- Precision: 0.8906
- Recall: 0.8943
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:|
| 2.3566 | 1.0 | 440 | 1.8523 | 0.4801 | 0.2302 | 0.4078 | 0.4472 | 41.6727 | 0.8942 | 0.8938 | 0.8947 |
| 1.2968 | 2.0 | 880 | 1.7823 | 0.447 | 0.2102 | 0.3795 | 0.4136 | 41.9091 | 0.8929 | 0.8925 | 0.8935 |
| 1.7438 | 3.0 | 1320 | 1.7954 | 0.4651 | 0.218 | 0.3904 | 0.4291 | 41.8818 | 0.8924 | 0.8906 | 0.8943 |
### Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1 |