|
import torch |
|
from transformers import DistilBertTokenizer, DistilBertModel |
|
|
|
# Load the tokenizer and model |
|
tokenizer = DistilBertTokenizer.from_pretrained("tokenizer_config.json") |
|
model = DistilBertModel.from_pretrained("pytorch_model.bin") |
|
|
|
# Define the inference function |
|
def predict(text): |
|
# Tokenize the input |
|
inputs = tokenizer(text, padding="max_length", truncation=True, return_tensors="pt") |
|
|
|
# Perform the inference |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
# Convert logits to probabilities |
|
probabilities = torch.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
return probabilities |
|
|
|
# Example usage |
|
text = "This is a sample input." |
|
probabilities = predict(text) |
|
print(probabilities) |
|
|