sanchit-gandhi's picture
Training in progress, step 500
4ea2eae verified
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import os
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, NewType, Optional, Tuple
import transformers
from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
DataClassType = NewType("DataClassType", Any)
class H4ArgumentParser(HfArgumentParser):
def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]] = None) -> List[dataclass]:
"""
Parse a YAML file and overwrite the default/loaded values with the values provided to the command line.
Args:
yaml_arg (`str`):
The path to the config file used
other_args (`List[str]`, *optional`):
A list of strings to parse as command line arguments, e.g. ['--arg=val', '--arg2=val2'].
Returns:
[`List[dataclass]`]: a list of dataclasses with the values from the YAML file and the command line
"""
arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg))
outputs = []
# strip other args list into dict of key-value pairs
other_args = {arg.split("=")[0].strip("-"): arg.split("=")[1] for arg in other_args}
used_args = {}
# overwrite the default/loaded value with the value provided to the command line
# adapted from https://github.com/huggingface/transformers/blob/d0b5002378daabf62769159add3e7d66d3f83c3b/src/transformers/hf_argparser.py#L327
for data_yaml, data_class in zip(arg_list, self.dataclass_types):
keys = {f.name for f in dataclasses.fields(data_yaml) if f.init}
inputs = {k: v for k, v in vars(data_yaml).items() if k in keys}
for arg, val in other_args.items():
# add only if in keys
if arg in keys:
base_type = data_yaml.__dataclass_fields__[arg].type
inputs[arg] = val
# cast type for ints, floats (default to strings)
if base_type in [int, float]:
inputs[arg] = base_type(val)
if base_type == List[str]:
inputs[arg] = [str(v) for v in val.split(",")]
# bool of a non-empty string is True, so we manually check for bools
if base_type == bool:
if val in ["true", "True"]:
inputs[arg] = True
else:
inputs[arg] = False
# add to used-args so we can check if double add
if arg not in used_args:
used_args[arg] = val
else:
raise ValueError(f"Duplicate argument provided: {arg}, may cause unexpected behavior")
obj = data_class(**inputs)
outputs.append(obj)
return outputs
def parse(self) -> DataClassType | Tuple[DataClassType]:
if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
# If we pass only one argument to the script and it's the path to a YAML file,
# let's parse it to get our arguments.
output = self.parse_yaml_file(os.path.abspath(sys.argv[1]))
# parse command line args and yaml file
elif len(sys.argv) > 2 and sys.argv[1].endswith(".yaml"):
output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:])
# parse command line args only
else:
output = self.parse_args_into_dataclasses()
if len(output) == 1:
output = output[0]
return output
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
"""
base_model_revision: Optional[str] = field(
default=None,
metadata={"help": ("The base model checkpoint for weights initialization with PEFT adatpers.")},
)
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
model_code_revision: str = field(default=None, metadata={"help": "The branch of the IFT model"})
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
trust_remote_code: bool = field(default=False, metadata={"help": "Trust remote code when loading a model."})
use_flash_attention_2: bool = field(
default=False,
metadata={
"help": (
"Whether to use flash attention 2. You must install this manually by running `pip install flash-attn --no-build-isolation`"
)
},
)
use_peft: bool = field(
default=False,
metadata={"help": ("Whether to use PEFT or not for training.")},
)
lora_r: Optional[int] = field(
default=16,
metadata={"help": ("LoRA R value.")},
)
lora_alpha: Optional[int] = field(
default=32,
metadata={"help": ("LoRA alpha.")},
)
lora_dropout: Optional[float] = field(
default=0.05,
metadata={"help": ("LoRA dropout.")},
)
lora_target_modules: Optional[List[str]] = field(
default=None,
metadata={"help": ("LoRA target modules.")},
)
lora_modules_to_save: Optional[List[str]] = field(
default=None,
metadata={"help": ("Model layers to unfreeze & train")},
)
load_in_8bit: bool = field(default=False, metadata={"help": "use 8 bit precision"})
load_in_4bit: bool = field(default=False, metadata={"help": "use 4 bit precision"})
bnb_4bit_quant_type: Optional[str] = field(
default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"}
)
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"})
def __post_init__(self):
if self.load_in_8bit and self.load_in_4bit:
raise ValueError("You can't use 8 bit and 4 bit precision at the same time")
@dataclass
class DataArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
chat_template: Optional[str] = field(default=None, metadata={"help": "The chat template to use."})
dataset_mixer: Optional[Dict[str, float]] = field(
default=None,
metadata={"help": ("Datasets and their proportions to be used for training ift/rl.")},
)
dataset_splits: Optional[List[str]] = field(
default_factory=lambda: ["train", "test"],
metadata={"help": ("List of train test splits to use in the dataset")},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
truncation_side: Optional[str] = field(
default=None, metadata={"help": "Truncation side to use for the tokenizer."}
)
@dataclass
class SFTConfig(transformers.TrainingArguments):
"""
Arguments related to the training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments
"""
max_seq_length: Optional[int] = field(
default=None,
metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")},
)
logging_first_step: bool = field(
default=True,
metadata={"help": ("Whether to log and evaluate the first global_step or not.")},
)
optim: Optional[str] = field(default="adamw_torch")
@dataclass
class DPOConfig(transformers.TrainingArguments):
"""
Arguments related to the DPO training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments
"""
beta: Optional[float] = field(
default=0.1,
metadata={"help": "The beta factor in DPO loss. Higher beta means less divergence from the initial policy."},
)
hub_model_revision: Optional[str] = field(
default="main",
metadata={"help": ("The Hub model branch to push the model to.")},
)
logging_first_step: bool = field(
default=True,
metadata={"help": ("Whether to log and evaluate the first global_step or not.")},
)
max_prompt_length: Optional[int] = field(
default=None,
metadata={"help": ("For DPO, the maximum length of the prompt to use for conditioning the model.")},
)
max_length: Optional[int] = field(
default=None,
metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")},
)
optim: Optional[str] = field(default="rmsprop")
remove_unused_columns: bool = field(default=False)
loss_type: Optional[str] = field(default="sigmoid", metadata={"help": ("The loss type for DPO.")})