#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Supervised fine-tuning script for decoder language models. """ import logging import random import sys import datasets import torch import transformers from transformers import set_seed from alignment import ( DataArguments, H4ArgumentParser, ModelArguments, SFTConfig, apply_chat_template, get_checkpoint, get_datasets, get_kbit_device_map, get_peft_config, get_quantization_config, get_tokenizer, ) from trl import SFTTrainer logger = logging.getLogger(__name__) def main(): parser = H4ArgumentParser((ModelArguments, DataArguments, SFTConfig)) model_args, data_args, training_args = parser.parse() # Set seed for reproducibility set_seed(training_args.seed) ############### # Setup logging ############### logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process a small summary logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Model parameters {model_args}") logger.info(f"Data parameters {data_args}") logger.info(f"Training/evaluation parameters {training_args}") # Check for last checkpoint last_checkpoint = get_checkpoint(training_args) if last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.") ############### # Load datasets ############### raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits) logger.info( f"Training on the following datasets and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}" ) column_names = list(raw_datasets["train"].features) if "messages" not in column_names: with training_args.main_process_first(desc="Log a few random samples from the processed training set"): def format_messages(example): messages = [] for idx, message in enumerate(example["data"]): role = "user" if idx % 2 == 0 else "assistant" messages.append({"content": message, "role": role}) example["messages"] = messages return example raw_datasets = raw_datasets.map(format_messages, desc="Formatting messages", num_proc=data_args.preprocessing_num_workers) ################ # Load tokenizer ################ tokenizer = get_tokenizer(model_args, data_args) ##################### # Apply chat template ##################### with training_args.main_process_first(): raw_datasets = raw_datasets.map( apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"}, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, desc="Applying chat template", ) train_dataset = raw_datasets["train"] eval_dataset = raw_datasets["test"] with training_args.main_process_first(desc="Log a few random samples from the processed training set"): for index in random.sample(range(len(raw_datasets["train"])), 3): logger.info(f"Sample {index} of the processed training set:\n\n{raw_datasets['train'][index]['text']}") ####################### # Load pretrained model ####################### logger.info("*** Load pretrained model ***") torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, use_flash_attention_2=model_args.use_flash_attention_2, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) logger.info("*** Model loaded! ***") ######################## # Initialize the Trainer ######################## trainer = SFTTrainer( model=model_args.model_name_or_path, model_init_kwargs=model_kwargs, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, dataset_text_field="text", max_seq_length=training_args.max_seq_length, tokenizer=tokenizer, packing=True, peft_config=get_peft_config(model_args), ) ############### # Training loop ############### logger.info("*** Train ***") checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics metrics["train_samples"] = len(train_dataset) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() ########## # Evaluate ########## if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() metrics["eval_samples"] = len(eval_dataset) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) ################################## # Save model and create model card ################################## logger.info("*** Save model ***") trainer.save_model(training_args.output_dir) logger.info(f"Model saved to {training_args.output_dir}") # Save everything else on main process kwargs = { "finetuned_from": model_args.model_name_or_path, "dataset": list(data_args.dataset_mixer.keys()), "dataset_tags": list(data_args.dataset_mixer.keys()), "tags": ["alignment-handbook"], } if trainer.accelerator.is_main_process: trainer.create_model_card(**kwargs) # Restore k,v cache for fast inference trainer.model.config.use_cache = True trainer.model.config.save_pretrained(training_args.output_dir) if training_args.push_to_hub is True: logger.info("Pushing to hub...") trainer.push_to_hub(**kwargs) logger.info("*** Training complete ***") if __name__ == "__main__": main()