|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
from transformers import Seq2SeqTrainingArguments |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"} |
|
) |
|
description_tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"} |
|
) |
|
prompt_tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
pad_token_id: int = field( |
|
default=None, |
|
metadata={"help": "If specified, change the model pad token id."}, |
|
) |
|
decoder_start_token_id: int = field( |
|
default=None, |
|
metadata={"help": "If specified, change the model decoder start token id."}, |
|
) |
|
freeze_text_encoder: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to freeze the text encoder."}, |
|
) |
|
do_sample: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to do sampling or greedy decoding."}, |
|
) |
|
temperature: float = field( |
|
default=1.0, |
|
metadata={"help": "Temperature if sampling."}, |
|
) |
|
max_length: int = field( |
|
default=2580, |
|
metadata={"help": "Generation max length."}, |
|
) |
|
bandwidth: float = field( |
|
default=6, |
|
metadata={"help": "Audio encoder bandwidth."}, |
|
) |
|
asr_model_name_or_path: str = field( |
|
default="distil-whisper/distil-large-v2", |
|
metadata={ |
|
"help": "Used to compute WER during evaluation. Path to pretrained model or model identifier from huggingface.co/models" |
|
}, |
|
) |
|
clap_model_name_or_path: str = field( |
|
default="laion/larger_clap_music_and_speech", |
|
metadata={ |
|
"help": "Used to compute audio similarity during evaluation. Path to pretrained model or model identifier from huggingface.co/models" |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
train_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " |
|
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." |
|
}, |
|
) |
|
train_dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset configs by a '+' symbol." |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") |
|
}, |
|
) |
|
train_dataset_samples: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of samples in the training data. Load and combine " |
|
"multiple datasets by separating dataset samples by a '+' symbol." |
|
}, |
|
) |
|
train_metadata_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " |
|
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." |
|
}, |
|
) |
|
eval_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified." |
|
}, |
|
) |
|
eval_dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified" |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="test", |
|
metadata={ |
|
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'" |
|
}, |
|
) |
|
eval_metadata_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " |
|
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." |
|
}, |
|
) |
|
target_audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"}, |
|
) |
|
description_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the description text data. Defaults to 'None'."}, |
|
) |
|
prompt_column_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the dataset column containing the prompt text data. Defaults to 'None'."}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of validation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=35.0, |
|
metadata={ |
|
"help": ( |
|
"Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`." |
|
"Also, used to set maximum audio length if `pad_to_max_length=True`." |
|
) |
|
}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} |
|
) |
|
max_text_length: int = field( |
|
default=500, metadata={"help": "If set, max description lengths in number of characters."} |
|
) |
|
max_prompt_token_length: int = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set, filter samples with prompts that are longer than `max_prompt_token_length` tokens." |
|
"Also, used to set maximum prompt token length if `pad_to_max_length=True`." |
|
) |
|
}, |
|
) |
|
max_description_token_length: int = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set, filter samples with descriptions that are longer than `max_description_token_length` tokens." |
|
"Also, used to set maximum desription token length if `pad_to_max_length=True`." |
|
) |
|
}, |
|
) |
|
pad_to_max_length: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"If `True`, pad audio, prompt and description to a maximum length set with respectively " |
|
"`max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is especially useful when data" |
|
" preprocessing errors out in distributed training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" |
|
" can consequently be loaded in distributed training." |
|
" In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. " |
|
) |
|
}, |
|
) |
|
token: str = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " |
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)." |
|
) |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=None, |
|
metadata={ |
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." |
|
}, |
|
) |
|
trust_remote_code: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " |
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will " |
|
"execute code present on the Hub on your local machine." |
|
) |
|
}, |
|
) |
|
add_audio_samples_to_wandb: bool = field( |
|
default=False, |
|
metadata={"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."}, |
|
) |
|
id_column_name: str = field(default=None, metadata={"help": "id column name."}) |
|
wandb_project: str = field( |
|
default="parler-speech", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
save_to_disk: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it." |
|
}, |
|
) |
|
temporary_save_to_disk: str = field(default=None, metadata={"help": "Temporarily save audio labels here."}) |
|
pad_to_multiple_of: Optional[int] = field( |
|
default=2, |
|
metadata={"help": ("Pad to multiple of for tokenizers.")}, |
|
) |
|
|
|
|
|
@dataclass |
|
class ParlerTTSTrainingArguments(Seq2SeqTrainingArguments): |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"The data type (dtype) in which to run training. One of `float32` (full-precision), " |
|
"`float16` or `bfloat16` (both half-precision)." |
|
) |
|
}, |
|
) |
|
audio_encoder_per_device_batch_size: int = field( |
|
default=8, |
|
metadata={"help": ("Specify the batch size of the audio encoding pre-processing steps.")}, |
|
) |
|
|