#!/usr/bin/env bash declare -a learning_rates=("3e-5" "1e-4" "3e-4") declare -a batch_sizes=("8" "16") declare -a gradient_accumulation_step_sizes=("4") for learning_rate in "${learning_rates[@]}"; do for batch_size in "${batch_sizes[@]}"; do for gradient_accumulation_steps in "${gradient_accumulation_step_sizes[@]}"; do python create_model.py CUDA_VISIBLE_DEVICES=1 python run_speech_recognition_seq2seq.py \ --dataset_name="librispeech_asr" \ --model_name_or_path="./" \ --tokenizer_name="./" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --eval_split_name="validation" \ --output_dir="./" \ --preprocessing_num_workers="1" \ --length_column_name="input_length" \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size=$batch_size \ --per_device_eval_batch_size=$batch_size \ --gradient_accumulation_steps=$gradient_accumulation_steps \ --generation_max_length="40" \ --generation_num_beams="1" \ --learning_rate=$learning_rate \ --warmup_steps="1000" \ --evaluation_strategy="steps" \ --text_column_name="text" \ --save_steps="1500" \ --eval_steps="1500" \ --logging_steps="1" \ --save_total_limit="1" \ --freeze_feature_encoder \ --gradient_checkpointing \ --fp16 \ --group_by_length \ --predict_with_generate \ --do_lower_case \ --do_train \ --do_eval \ --push_to_hub \ --use_auth_token done done done