from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2Processor, BertConfig, BertLMHeadModel import torch # checkpoints to leverage encoder_id = "facebook/wav2vec2-large-lv60" decoder_id = "bert-large-uncased" feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id) feature_extractor.save_pretrained("./") tokenizer = AutoTokenizer.from_pretrained(decoder_id) tokenizer.save_pretrained("./") decoder_config = BertConfig.from_pretrained(decoder_id, is_decoder=True) decoder = BertLMHeadModel(decoder_config) decoder.save_pretrained("decoder") # save the decoder model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, "decoder", encoder_add_adapter=True) # verify the decoder model.decoder.config.is_decoder model.decoder.config.add_cross_attention # set all encoder regularisation to zero model.config.encoder.feat_proj_dropout = 0.0 model.config.encoder.final_dropout = 0.0 model.config.encoder.activation_dropout = 0.0 model.config.encoder.apply_spec_augment = False model.config.encoder.attention_dropout = 0.0 model.config.encoder.feat_extract_dropout = 0.0 model.config.encoder.feat_proj_dropout = 0.0 model.config.encoder.hidden_dropout = 0.0 model.config.encoder.hidden_dropout_prob = 0.0 model.config.encoder.layerdrop = 0.0 model.config.encoder.mask_feature_prob = 0.0 model.config.encoder.mask_time_prob = 0.0 # set all decoder regularisation to zero model.config.decoder.attention_probs_dropout_prob = 0.0 # set special token ids model.config.decoder_start_token_id = tokenizer.cls_token_id model.config.pad_token_id = tokenizer.pad_token_id model.config.eos_token_id = tokenizer.sep_token_id model.config.max_length = 50 model.config.num_beams = 1 model.config.use_cache = False model.config.decoder.use_cache = False model.config.processor_class = "Wav2Vec2Processor" # check if generation works out = model.generate(torch.ones((1, 2000))) model.save_pretrained("./")