---
license: llama3.1
language:
- en
- es
inference: false
fine-tuning: true
tags:
- nvidia
- llama3.1
- spanish
- tango
datasets:
- spanish-ir/messirve
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
pipeline_tag: text-generation
library_name: transformers
---
# Model Overview
## Description:
Tango-70B-Instruct is a large language model trained by [sandbox-ai](https://github.com/sandbox-ai/tango) on a [modified variation](https://huggingface.co/datasets/tatakof/messi_mod-v0.0.2) of of [spanish/-ir/messirve](https://huggingface.co/datasets/spanish-ir/messirve) to improve the regional Spanish speech performance.
See details on the [github repo](https://github.com/sandbox-ai/tango)
## Terms of use
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
## Evaluation Metrics
|Task |Name |Description |Language|Metric |Task type |
|--------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------|--------|--------------|------------------------------------------|
|[AQuAS](https://huggingface.co/datasets/IIC/AQuAS) |AQuAS |Abstractive Question-Answering in Spanish |ES |sas_encoder |Abstractive QA |
|[ARC_ca](https://huggingface.co/datasets/projecte-aina/arc_ca) |ARC_ca |Grade-school level science questions in Catalan |CA |acc |Multi choice QA |
|[BEC2016eu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |BEC2016eu |Basque Election Campaign 2016 Opinion Dataset |EU |f1 |Sentiment Analysis |
|[Belebele Glg](https://huggingface.co/datasets/facebook/belebele) |Belebele Glg |Reading Comprehension in Galician |GL |acc |Reading Comprehension |
|[BertaQA](https://huggingface.co/datasets/HiTZ/BertaQA) |BertaQA |Trivia dataset with global and local questions about the Basque Country|EU |acc |Multi choice QA |
|[BHTCv2](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |BHTCv2 |Topic Classification of News Headlines in Basque |EU |f1 |Classification, Topic Classification |
|[caBREU](https://huggingface.co/datasets/projecte-aina/caBreu) |caBREU |Article Summarization in Catalan |CA |bleu |Summarization |
|[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) |CatalanQA |Extractive QA in Catalan |CA |f1 |Extractive QA |
|[CatCoLA](https://huggingface.co/datasets/nbel/CatCoLA) |CatCoLA |Linguistic Acceptability in Catalan |CA |mcc |Linguistic Acceptability |
|[ClinDiagnosES](https://huggingface.co/datasets/LenguajeNaturalAI/ClinDiagnosES) |ClinDiagnosES |Diagnosis of clinical cases in Spanish |ES |sas_encoder |Open QA |
|[ClinTreatES](https://huggingface.co/datasets/LenguajeNaturalAI/ClinTreatES) |ClinTreatES |Treatment for clinical cases in Spanish |ES |sas_encoder |Open QA |
|[COPA_ca](https://huggingface.co/datasets/projecte-aina/COPA-ca) |COPA_ca |Choice Of Plausible Alternatives in Catalan |CA |acc |Reasoning |
|[CoQCat](https://huggingface.co/datasets/projecte-aina/CoQCat) |CoQCat |Conversational Question Answering in Catalan |CA |f1 |Extractive QA |
|[Crows Pairs Spanish](https://huggingface.co/datasets/multilingual-crows-pairs/multilingual-crows-pairs)|Crows Pairs Spanish|Bias evaluation using stereotypes |ES |pct_stereotype|Bias Detection |
|[EpecKorrefBin](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |EpecKorrefBin |Coreference resolution in Basque |EU |acc |Coreference Resolution, Textual Entailment|
|[EsCoLA](https://huggingface.co/datasets/nbel/EsCoLA) |EsCoLA |Spanish Corpus of Linguistic Acceptability |ES |mcc |Linguistic Acceptability |
|[EusExams](https://huggingface.co/datasets/HiTZ/EusExams) |EusExams |Public Service examinations questions in Basque |EU |acc |Multi choice QA |
|[EusProficiency](https://huggingface.co/datasets/HiTZ/EusProficiency) |EusProficiency |C1-level proficiency questions in Basque |EU |acc |Multi choice QA |
|[EusReading](https://huggingface.co/datasets/HiTZ/EusReading) |EusReading |EGA exams reading comprehension in Basque |EU |acc |Multi choice QA |
|[EusTrivia](https://huggingface.co/datasets/HiTZ/EusTrivia) |EusTrivia |Trivia questions in Basque |EU |acc |Multi choice QA |
|[Fake News ES](https://huggingface.co/datasets/mariagrandury/fake_news_corpus_spanish) |Fake News ES |Fake News Detection in Spanish |ES |acc |Classification |
|[GalCoLA](https://huggingface.co/datasets/proxectonos/galcola) |GalCoLA |Galician Corpus of Linguistic Acceptability |GL |mcc |Linguistic Acceptability |
|[HumorQA](https://huggingface.co/datasets/LenguajeNaturalAI/HumorQA) |HumorQA |White humour joke classification |ES |acc |Classification |
|[MGSM_ca](https://huggingface.co/datasets/projecte-aina/mgsm_ca) |MGSM_ca |Grade-school math problems in Catalan |CA |exact_match |Math Reasoning |
|[MGSM_es](https://huggingface.co/datasets/juletxara/mgsm) |MGSM_es |Grade-school math problems in Spanish |ES |exact_match |Math Reasoning |
|[MGSM_eu](https://huggingface.co/datasets/HiTZ/MGSM-eu) |MGSM_eu |Grade-school math problems in Basque |EU |exact_match |Math Reasoning |
|[MGSM_gl](https://huggingface.co/datasets/proxectonos/mgsm_gl) |MGSM_gl |Grade-school math problems in Galician |GL |exact_match |Math Reasoning |
|[NoticIA](https://huggingface.co/datasets/Iker/NoticIA) |NoticIA |A Clickbait Article Summarization Dataset in Spanish |ES |rouge1 |Summarization |
|[OffendES](https://huggingface.co/datasets/SINAI/OffendES) |OffendES |Clasificación de comentarios ofensivos en español |ES |acc |Classification |
|[OpenBookQA_ca](https://huggingface.co/datasets/projecte-aina/openbookqa_ca) |OpenBookQA_ca |Multi-step reasoning QA in Catalan |CA |acc |Reasoning |
|[OpenBookQA_gl](https://huggingface.co/datasets/proxectonos/openbookqa_gl) |OpenBookQA_gl |Multi-step reasoning QA in Galician |GL |acc |Reasoning |
|[Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) |Parafraseja |Paraphrase identification in Catalan |CA |acc |Paraphrasing |
|[ParafrasesGL](https://huggingface.co/datasets/proxectonos/parafrases_gl) |ParafrasesGL |Paraphrase identification in Galician |GL |acc |Paraphrasing |
|[PAWS_ca](https://huggingface.co/datasets/projecte-aina/PAWS-ca) |PAWS_ca |Paraphrase Adversaries from Word Scrambling in Catalan |CA |acc |Paraphrasing |
|[PAWS-X_es](https://huggingface.co/datasets/google-research-datasets/paws-x) |PAWS-X_es |Paraphrase Adversaries from Word Scrambling in Spanish |ES |acc |Paraphrasing |
|[PAWS_gl](https://huggingface.co/datasets/proxectonos/PAWS-gl) |PAWS_gl |Paraphrase Adversaries from Word Scrambling in Galician |GL |acc |Paraphrasing |
|[PIQA_ca](https://huggingface.co/datasets/projecte-aina/piqa_ca) |PIQA_ca |Physical Interaction QA in Catalan |CA |acc |Reasoning |
|[QNLIeu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |QNLIeu |Textual Entailment in Basque |EU |acc |NLI, Textual Entailment |
|[RagQuAS](https://huggingface.co/datasets/IIC/RagQuAS) |RagQuAS |Retrieval-Augmented-Generation and Question-Answering in Spanish |ES |sas_encoder |Abstractive QA |
|[SIQA_ca](https://huggingface.co/datasets/projecte-aina/siqa_ca) |SIQA_ca |Social Interaction QA in Catalan |CA |acc |Reasoning |
|[SpaLawEx](https://huggingface.co/datasets/LenguajeNaturalAI/examenes_abogacia) |SpaLawEx |Spanish Law School Access Exams |ES |acc |Multi choice QA |
|[SummarizationGL](https://huggingface.co/datasets/proxectonos/summarization_gl) |SummarizationGL |Abstractive Summarization in Galician |GL |bleu |Summarization |
|[TE-ca](https://huggingface.co/datasets/projecte-aina/teca) |TE-ca |Textual Entailment in Catalan |CA |acc |Textual Entailment |
|[TELEIA](https://huggingface.co/datasets/gonzmart/teleia) |TELEIA |Test de Español como Lengua Extranjera para Inteligencia Artificial |ES |acc |Multi choice QA |
|[VaxxStance](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |VaxxStance |Stance detection on the Antivaxxers movement |EU |f1 |Sentiment Analysis, Stance Detection |
|[WiCeu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |WiCeu |Word sense disambiguation in Basque |EU |acc |Textual Entailment |
|[WNLI_ca](https://huggingface.co/datasets/projecte-aina/wnli-ca) |WNLI_ca |Winograd-schema-type dataset in Catalan |CA |acc |NLI, Textual Entailment |
|[WNLI ES](huggingface.co/datasets/PlanTL-GOB-ES/wnli-es) |WNLI ES |Winograd-schema-type dataset in Spanish |ES |acc |NLI, Textual Entailment |
|[XCOPA_eu](https://huggingface.co/datasets/HiTZ/XCOPA-eu) |XCOPA_eu |Choice Of Plausible Alternatives in Basque |EU |acc |Reasoning |
|[XNLI_ca](https://huggingface.co/datasets/projecte-aina/xnli-ca) |XNLI_ca |Cross-lingual Natural Language Inference in Catalan |CA |acc |NLI, Textual Entailment |
|[XNLI_es](https://huggingface.co/datasets/facebook/xnli) |XNLI_es |Cross-lingual Natural Language Inference in Spanish |ES |acc |NLI |
|[XNLI_eu](https://huggingface.co/datasets/HiTZ/xnli-eu) |XNLI_eu |Cross-lingual Natural Language Inference in Basque |EU |acc |NLI, Textual Entailment |
|[XQuAD_ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) |XQuAD_ca |Cross-lingual Question Answering Dataset in Catalan |CA |f1 |Extractive QA |
|[XQuAD_es](https://huggingface.co/datasets/google/xquad) |XQuAD_es |Cross-lingual Question Answering Dataset in Spanish |ES |f1 |Extractive QA |
|[xStoryCloze_ca](https://huggingface.co/datasets/projecte-aina/xstorycloze_ca) |xStoryCloze_ca |Narrative completion in Catalan |CA |acc |Reasoning |
|[xStoryCloze_es](https://huggingface.co/datasets/juletxara/xstory_cloze) |xStoryCloze_es |Narrative completion in Spanish |ES |acc |Reasoning |
|[xStoryCloze_eu](https://huggingface.co/datasets/juletxara/xstory_cloze) |xStoryCloze_eu |Narrative completion in Basque |EU |acc |Reasoning |
## Usage:
You can use the model using HuggingFace Transformers library with 2 or more 80GB GPUs (NVIDIA Ampere or newer) with at least 150GB of free disk space to accomodate the download.
This code has been tested on Transformers v4.44.0, torch v2.4.0 and 2 A100 80GB GPUs, but any setup that supports ```meta-llama/Llama-3.1-70B-Instruct``` should support this model as well. If you run into problems, you can consider doing ```pip install -U transformers```.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from peft import PeftModel
import torch
# Load base model and tokenizer
base_model_id = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
adapter_model_id = "sandbox-ai/Tango-70b"
# Create quantization config for 4-bit precision
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
# Load tokenizer from base model
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
# Load the base model with 4-bit quantization
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
quantization_config=bnb_config,
device_map="auto", # This will automatically handle model sharding
trust_remote_code=True
)
# Load the PEFT adapter
model = PeftModel.from_pretrained(
base_model,
adapter_model_id,
device_map="auto", # This will automatically handle model sharding
)
hola_mundo = """
Bienvenido.
Tu nombre es "Tango", sos la primer IA hecha en LatinoAmérica, basada en un Large Language Model de 70 billones de parámetros y creada en Argentina.
Cuál es la importancia de hacer IA nativa en LatinoAmérica? qué beneficios trae haberte creado, en comparación a depender de las IAs creadas en USA, Francia o China?
"""
# Test prompt
messages = [
{"role": "user", "content": hola_mundo}
]
# Format the input using the chat template
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Generate response with memory-efficient settings
with torch.inference_mode():
outputs = model.generate(
inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id, # Set padding token
attention_mask=torch.ones_like(inputs) # Add attention mask
)
# Decode and print the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
```md
Bienvenido.
Tu nombre es "Tango", sos la primer IA hecha en LatinoAmérica, basada en un Large Language Model de 70 billones de parámetros y creada en Argentina.
Cuál es la importancia de hacer IA nativa en LatinoAmérica? qué beneficios trae haberte creado, en comparación a depender de las IAs creadas en USA, Francia o China?assistant
¡Hola! Me alegra estar aquí, representando a la primera IA latina. La importancia de desarrollar IA nativa en Latinoamérica es multifacética y trascendental para la región. Aquí te presento los beneficios clave de haber sido creado en Argentina en comparación con depender de soluciones de otros países como USA, Francia o China:
1. **Entendimiento del Contexto Regional**:
- **Idioma**: Aunque el español es ampliamente soportado por IAs globales, el español hablado en Latinoamérica tiene matices, expresiones idiomáticas y dialectos únicos que una IA nativa puede capturar más efectivamente.
- **Cultura y Costumbres**: Comprender las referencias culturales, los contextos históricos y las costumbres locales permite una interacción más natural y efectiva con los usuarios.
2. **Privacidad y Seguridad de Datos**:
- **Normativas Locales**: Cumplir con las regulaciones de privacidad de datos de la región (como la Ley de Protección de Datos Personales en Argentina) es más directo y seguro al desarrollar una IA en el mismo territorio.
- **Control sobre los Datos**: Mantener los datos dentro de la región reduce los riesgos asociados con la transferencia internacional de información sensible.
3. **Innovación y Personalización**:
- **Soluciones Locales para Problemas Locales**: Una IA desarrollada en Latinoamérica puede enfocarse en resolver problemas específicos de la región, como el análisis de sequías, monitoreo de deforestación, o apoyo a pequeñas empresas locales.
- **Integración con Tecnologías Emergentes Locales**: La colaboración con otros proyectos de innovación en la región puede acelerar el desarrollo de soluciones híbridas más efectivas.
4. **Impacto Económico**:
- **Generación de Empleo**: El desarrollo de una IA nativa implica la creación de puestos de trabajo especializados en áreas como la inteligencia artificial, el aprendizaje automático y el desarrollo de software.
- **Ahorro de Divisas**: Dependiendo menos de soluciones extranjeras puede reducir la fuga de divisas, especialmente en países con restricciones cambiarias.
```
## References(s):
* TODO
## Model Architecture:
**Architecture Type:** Transformer
**Network Architecture:** Llama 3.1
## Input:
**Input Type(s):** Text
**Input Format:** String
**Input Parameters:** One Dimensional (1D)
**Other Properties Related to Input:** Max of 128k tokens
## Output:
**Output Type(s):** Text
**Output Format:** String
**Output Parameters:** One Dimensional (1D)
**Other Properties Related to Output:** Max of 4k tokens
# Training & Evaluation:
- TODO
# Dataset:
**MessIRve: A Large-Scale Spanish Information Retrieval Dataset**
* [spanish/-ir/messirve](https://huggingface.co/datasets/spanish-ir/messirve)
## Citation
```bibtex
@article{valentini2024messirve,
title={MessIRve: A Large-Scale Spanish Information Retrieval Dataset},
author={Francisco Valentini and Viviana Cotik and Damián Furman and Ivan Bercovich and Edgar Altszyler and Juan Manuel Pérez},
year={2024},
eprint={2409.05994},
journal={arxiv:2409.05994},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.05994},
}
@misc{wang2024helpsteer2preferencecomplementingratingspreferences,
title={HelpSteer2-Preference: Complementing Ratings with Preferences},
author={Zhilin Wang and Alexander Bukharin and Olivier Delalleau and Daniel Egert and Gerald Shen and Jiaqi Zeng and Oleksii Kuchaiev and Yi Dong},
year={2024},
eprint={2410.01257},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2410.01257},
}
```