File size: 13,353 Bytes
3c428bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import gc
import time
import wandb
import torch
import random
import weakref
import numpy as np
from utils import *
from config import *
from tqdm import tqdm
from copy import deepcopy
import torch.distributed as dist
from torch.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import BertConfig, GPT2Config, get_constant_schedule_with_warmup
patchilizer = M3Patchilizer()
def clear_unused_tensors():
gc.disable() # Temporarily disable garbage collection
try:
# Get the set of tensor ids used by the model
if hasattr(model, "module"):
model_tensors = {id(p) for p in model.module.parameters()}
else:
model_tensors = {id(p) for p in model.parameters()}
# Get the set of tensor ids used by the optimizer
optimizer_tensors = {
id(state)
for state_dict in optimizer.state.values()
for state in state_dict.values()
if isinstance(state, torch.Tensor) # Ensure only tensors are considered
}
# List of all CUDA tensors currently in memory
tensors = [obj for obj in gc.get_objects() if isinstance(obj, torch.Tensor) and obj.is_cuda]
# Create weak references to avoid interfering with garbage collection
tensor_refs = [weakref.ref(tensor) for tensor in tensors]
for tensor_ref in tensor_refs:
tensor = tensor_ref() # Dereference the weak reference
if tensor is not None and id(tensor) not in model_tensors and id(tensor) not in optimizer_tensors:
# Mark the tensor for deletion
tensor.detach_() # Detach from computation graph
del tensor # Delete the tensor reference
except:
pass
finally:
gc.enable() # Re-enable garbage collection
gc.collect() # Force a garbage collection
torch.cuda.empty_cache() # Clear the CUDA cache
def list_files_in_directory(directories, extensions=["abc", "mtf"]):
file_list = []
for directory in directories:
for root, dirs, files in os.walk(directory):
for file in files:
if any(file.endswith(ext) for ext in extensions):
file_path = os.path.join(root, file)
file_list.append(file_path)
return file_list
def collate_batch(batch):
input_patches, input_masks, selected_indices, target_patches = zip(*batch)
input_patches = torch.nn.utils.rnn.pad_sequence(input_patches, batch_first=True, padding_value=patchilizer.pad_token_id)
input_masks = torch.nn.utils.rnn.pad_sequence(input_masks, batch_first=True, padding_value=0)
selected_indices = torch.nn.utils.rnn.pad_sequence(selected_indices, batch_first=True, padding_value=0)
target_patches = torch.nn.utils.rnn.pad_sequence(target_patches, batch_first=True, padding_value=patchilizer.pad_token_id)
return input_patches, input_masks, selected_indices, target_patches
class M3Dataset(Dataset):
def __init__(self, filenames, mode):
print("The number of "+mode+" data: "+str(len(filenames)))
self.filenames = filenames
self.mode = mode
def __len__(self):
return len(self.filenames)
def __getitem__(self, idx):
filename = self.filenames[idx]
try:
with open(filename, "r", encoding="utf-8") as f:
item = f.read().replace("L:1/8\n", "") if filename.endswith(".abc") else f.read()
except Exception as e:
print(e)
print("Failed to load: "+filename)
item = ""
target_patches = patchilizer.encode(item, add_special_patches=True, truncate=True, random_truncate=(self.mode=="train"))
input_masks = torch.tensor([1]*len(target_patches))
input_patches, selected_indices = mask_patches(target_patches, patchilizer, self.mode)
input_patches = input_patches.reshape(-1)
target_patches = torch.tensor(target_patches).reshape(-1)
return input_patches, input_masks, selected_indices, target_patches
# call model with a batch of input
def process_one_batch(batch):
input_patches, input_masks, selected_indices, target_patches = batch
loss = model(input_patches,
input_masks,
selected_indices,
target_patches).loss
# Reduce the loss on GPU 0
if world_size > 1:
loss = loss.unsqueeze(0)
dist.reduce(loss, dst=0)
loss = loss / world_size
dist.broadcast(loss, src=0)
return loss.mean()
# do one epoch for training
def train_epoch(epoch):
tqdm_train_set = tqdm(train_set)
total_train_loss = 0
iter_idx = 1
model.train()
train_steps = (epoch-1)*len(train_set)
for batch in tqdm_train_set:
with autocast(device_type='cuda'):
loss = process_one_batch(batch)
scaler.scale(loss).backward()
total_train_loss += loss.item()
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
model.zero_grad(set_to_none=True)
tqdm_train_set.set_postfix({str(global_rank)+'_train_loss': total_train_loss / iter_idx})
train_steps += 1
# Log the training loss to wandb
if global_rank==0 and M3_WANDB_LOG:
wandb.log({"train_loss": total_train_loss / iter_idx}, step=train_steps)
iter_idx += 1
if iter_idx % 1000 == 0:
clear_unused_tensors()
return total_train_loss / (iter_idx-1)
# do one epoch for eval
def eval_epoch():
tqdm_eval_set = tqdm(eval_set)
total_eval_loss = 0
iter_idx = 1
model.eval()
# Evaluate data for one epoch
for batch in tqdm_eval_set:
with torch.no_grad():
loss = process_one_batch(batch)
total_eval_loss += loss.item()
tqdm_eval_set.set_postfix({str(global_rank)+'_eval_loss': total_eval_loss / iter_idx})
iter_idx += 1
return total_eval_loss / (iter_idx-1)
# train and eval
if __name__ == "__main__":
# Set up distributed training
world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else 0
local_rank = int(os.environ['LOCAL_RANK']) if 'LOCAL_RANK' in os.environ else 0
if world_size > 1:
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
dist.init_process_group(backend='nccl')
else:
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if M3_DETERMINISTIC:
seed = 42 + global_rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
encoder_config = BertConfig(vocab_size=1,
hidden_size=M3_HIDDEN_SIZE,
num_hidden_layers=PATCH_NUM_LAYERS,
num_attention_heads=M3_HIDDEN_SIZE//64,
intermediate_size=M3_HIDDEN_SIZE*4,
max_position_embeddings=PATCH_LENGTH)
decoder_config = GPT2Config(vocab_size=128,
n_positions=PATCH_SIZE,
n_embd=M3_HIDDEN_SIZE,
n_layer=TOKEN_NUM_LAYERS,
n_head=M3_HIDDEN_SIZE//64,
n_inner=M3_HIDDEN_SIZE*4)
model = M3Model(encoder_config, decoder_config)
model = model.to(device)
# print parameter number
print("Parameter Number: "+str(sum(p.numel() for p in model.parameters() if p.requires_grad)))
if world_size > 1:
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
scaler = GradScaler()
optimizer = torch.optim.AdamW(model.parameters(), lr=M3_LEARNING_RATE)
if M3_WANDB_LOG and global_rank==0:
# Initialize wandb
if WANDB_KEY:
wandb.login(key=WANDB_KEY)
wandb.init(project="m3",
name=M3_WEIGHTS_PATH.replace("weights_", "").replace(".pth", ""))
# load filenames under train and eval folder
train_files = list_files_in_directory(TRAIN_FOLDERS)
eval_files = list_files_in_directory(EVAL_FOLDERS)
if len(eval_files)==0:
train_files, eval_files = split_data(train_files)
train_batch_nums = int(len(train_files) / M3_BATCH_SIZE)
eval_batch_nums = int(len(eval_files) / M3_BATCH_SIZE)
train_files = train_files[:train_batch_nums*M3_BATCH_SIZE]
eval_files = eval_files[:eval_batch_nums*M3_BATCH_SIZE]
train_set = M3Dataset(train_files, 'train')
eval_set = M3Dataset(eval_files, 'eval')
train_sampler = DistributedSampler(train_set, num_replicas=world_size, rank=global_rank)
eval_sampler = DistributedSampler(eval_set, num_replicas=world_size, rank=global_rank)
train_set = DataLoader(train_set, batch_size=M3_BATCH_SIZE, collate_fn=collate_batch, sampler=train_sampler, shuffle = (train_sampler is None))
eval_set = DataLoader(eval_set, batch_size=M3_BATCH_SIZE, collate_fn=collate_batch, sampler=eval_sampler, shuffle = (train_sampler is None))
lr_scheduler = get_constant_schedule_with_warmup(optimizer = optimizer, num_warmup_steps = 1000)
if M3_LOAD_CKPT and os.path.exists(M3_WEIGHTS_PATH):
# Load checkpoint to CPU
checkpoint = torch.load(M3_WEIGHTS_PATH, map_location='cpu', weights_only=True)
# Here, model is assumed to be on GPU
# Load state dict to CPU model first, then move the model to GPU
if torch.cuda.device_count() > 1:
# If you have a DataParallel model, you need to load to model.module instead
cpu_model = deepcopy(model.module)
cpu_model.load_state_dict(checkpoint['model'])
model.module.load_state_dict(cpu_model.state_dict())
else:
# Load to a CPU clone of the model, then load back
cpu_model = deepcopy(model)
cpu_model.load_state_dict(checkpoint['model'])
model.load_state_dict(cpu_model.state_dict())
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_sched'])
pre_epoch = checkpoint['epoch']
best_epoch = checkpoint['best_epoch']
min_eval_loss = checkpoint['min_eval_loss']
print(f"Successfully Loaded Checkpoint from Epoch {checkpoint['epoch']} with loss {checkpoint['min_eval_loss']}")
checkpoint = None
else:
pre_epoch = 0
best_epoch = 0
min_eval_loss = float('inf')
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=M3_LEARNING_RATE)
for epoch in range(1+pre_epoch, M3_NUM_EPOCH+1):
train_sampler.set_epoch(epoch)
eval_sampler.set_epoch(epoch)
print('-' * 21 + "Epoch " + str(epoch) + '-' * 21)
train_loss = train_epoch(epoch)
eval_loss = eval_epoch()
if global_rank==0:
with open(M3_LOGS_PATH,'a') as f:
f.write("Epoch " + str(epoch) + "\ntrain_loss: " + str(train_loss) + "\neval_loss: " +str(eval_loss) + "\ntime: " + time.asctime(time.localtime(time.time())) + "\n\n")
if eval_loss < min_eval_loss:
best_epoch = epoch
min_eval_loss = eval_loss
checkpoint = {
'model': model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'min_eval_loss': min_eval_loss
}
torch.save(checkpoint, M3_WEIGHTS_PATH)
checkpoint = {
'model': model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'min_eval_loss': min_eval_loss
}
torch.save(checkpoint, "latest_"+M3_WEIGHTS_PATH)
if world_size > 1:
dist.barrier()
if global_rank==0:
print("Best Eval Epoch : "+str(best_epoch))
print("Min Eval Loss : "+str(min_eval_loss))
|