File size: 20,636 Bytes
3c428bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import re
import os
import math
import torch
import random
from config import *
from unidecode import unidecode
from torch.nn import functional as F
from transformers import AutoModel, BertModel, GPT2LMHeadModel, PreTrainedModel, GPT2Config
try:
import torch.distributed.nn
from torch import distributed as dist
has_distributed = True
except ImportError:
has_distributed = False
try:
import horovod.torch as hvd
except ImportError:
hvd = None
class ClipLoss(torch.nn.Module):
def __init__(
self,
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__()
self.local_loss = local_loss
self.gather_with_grad = gather_with_grad
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
self.use_horovod = use_horovod
# cache state
self.prev_num_logits = 0
self.labels = {}
def gather_features(
self,
image_features,
text_features,
local_loss=False,
gather_with_grad=False,
rank=0,
world_size=1,
use_horovod=False
):
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
if use_horovod:
assert hvd is not None, 'Please install horovod'
if gather_with_grad:
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
else:
with torch.no_grad():
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
else:
# We gather tensors from all gpus
if gather_with_grad:
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
else:
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
dist.all_gather(gathered_image_features, image_features)
dist.all_gather(gathered_text_features, text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
return all_image_features, all_text_features
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
# calculated ground-truth and cache if enabled
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
return labels
def get_logits(self, image_features, text_features, logit_scale):
if self.world_size > 1:
all_image_features, all_text_features = self.gather_features(
image_features, text_features,
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
if self.local_loss:
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
logits_per_image = logit_scale * all_image_features @ all_text_features.T
logits_per_text = logits_per_image.T
else:
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
return logits_per_image, logits_per_text
def forward(self, image_features, text_features, logit_scale, output_dict=False):
device = image_features.device
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
labels = self.get_ground_truth(device, logits_per_image.shape[0])
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
return {"contrastive_loss": total_loss} if output_dict else total_loss
class M3Patchilizer:
def __init__(self):
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.mask_token_id = 3
def split_bars(self, body):
bars = re.split(self.regexPattern, ''.join(body))
bars = list(filter(None, bars)) # remove empty strings
if bars[0] in self.delimiters:
bars[1] = bars[0] + bars[1]
bars = bars[1:]
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
return bars
def bar2patch(self, bar, patch_size=PATCH_SIZE):
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
patch = patch[:patch_size]
patch += [self.pad_token_id] * (patch_size - len(patch))
return patch
def patch2bar(self, patch):
return ''.join(chr(idx) if idx > self.mask_token_id else '' for idx in patch)
def encode(self,
item,
patch_size=PATCH_SIZE,
add_special_patches=False,
truncate=False,
random_truncate=False):
item = unidecode(item)
lines = re.findall(r'.*?\n|.*$', item)
lines = list(filter(None, lines)) # remove empty lines
patches = []
if lines[0].split(" ")[0] == "ticks_per_beat":
patch = ""
for line in lines:
if patch.startswith(line.split(" ")[0]) and (len(patch) + len(" ".join(line.split(" ")[1:])) <= patch_size-2):
patch = patch[:-1] + "\t" + " ".join(line.split(" ")[1:])
else:
if patch:
patches.append(patch)
patch = line
if patch!="":
patches.append(patch)
else:
for line in lines:
if len(line) > 1 and ((line[0].isalpha() and line[1] == ':') or line.startswith('%%')):
patches.append(line)
else:
bars = self.split_bars(line)
if bars:
bars[-1] += '\n'
patches.extend(bars)
if add_special_patches:
bos_patch = chr(self.bos_token_id) * patch_size
eos_patch = chr(self.eos_token_id) * patch_size
patches = [bos_patch] + patches + [eos_patch]
if len(patches) > PATCH_LENGTH and truncate:
choices = ["head", "tail", "middle"]
choice = random.choice(choices)
if choice=="head" or random_truncate==False:
patches = patches[:PATCH_LENGTH]
elif choice=="tail":
patches = patches[-PATCH_LENGTH:]
else:
start = random.randint(1, len(patches)-PATCH_LENGTH)
patches = patches[start:start+PATCH_LENGTH]
patches = [self.bar2patch(patch) for patch in patches]
return patches
def decode(self, patches):
return ''.join(self.patch2bar(patch) for patch in patches)
class M3PatchEncoder(PreTrainedModel):
def __init__(self, config):
super(M3PatchEncoder, self).__init__(config)
self.patch_embedding = torch.nn.Linear(PATCH_SIZE*128, M3_HIDDEN_SIZE)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.base = BertModel(config=config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.mask_token_id = 3
def forward(self,
input_patches, # [batch_size, seq_length, hidden_size]
input_masks): # [batch_size, seq_length]
# Transform input_patches into embeddings
input_patches = torch.nn.functional.one_hot(input_patches, num_classes=128)
input_patches = input_patches.reshape(len(input_patches), -1, PATCH_SIZE*128).type(torch.FloatTensor)
input_patches = self.patch_embedding(input_patches.to(self.device))
# Apply BERT model to input_patches and input_masks
return self.base(inputs_embeds=input_patches, attention_mask=input_masks)
class M3TokenDecoder(PreTrainedModel):
def __init__(self, config):
super(M3TokenDecoder, self).__init__(config)
self.base = GPT2LMHeadModel(config=config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.mask_token_id = 3
def forward(self,
patch_features, # [batch_size, hidden_size]
target_patches): # [batch_size, seq_length]
# get input embeddings
inputs_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)
# concatenate the encoded patches with the input embeddings
inputs_embeds = torch.cat((patch_features.unsqueeze(1), inputs_embeds[:,1:,:]), dim=1)
# preparing the labels for model training
target_masks = target_patches == self.pad_token_id
target_patches = target_patches.clone().masked_fill_(target_masks, -100)
# get the attention mask
target_masks = ~target_masks
target_masks = target_masks.type(torch.int)
return self.base(inputs_embeds=inputs_embeds,
attention_mask=target_masks,
labels=target_patches)
def generate(self,
patch_feature,
tokens):
# reshape the patch_feature and tokens
patch_feature = patch_feature.reshape(1, 1, -1)
tokens = tokens.reshape(1, -1)
# get input embeddings
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
# concatenate the encoded patches with the input embeddings
tokens = torch.cat((patch_feature, tokens[:,1:,:]), dim=1)
# get the outputs from the model
outputs = self.base(inputs_embeds=tokens)
# get the probabilities of the next token
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
return probs.detach().cpu().numpy()
class M3Model(PreTrainedModel):
def __init__(self, encoder_config, decoder_config):
super(M3Model, self).__init__(encoder_config)
self.encoder = M3PatchEncoder(encoder_config)
self.decoder = M3TokenDecoder(decoder_config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.mask_token_id = 3
def forward(self,
input_patches, # [batch_size, seq_length, hidden_size]
input_masks, # [batch_size, seq_length]
selected_indices, # [batch_size, seq_length]
target_patches): # [batch_size, seq_length, hidden_size]
input_patches = input_patches.reshape(len(input_patches), -1, PATCH_SIZE).to(self.device)
input_masks = input_masks.to(self.device)
selected_indices = selected_indices.to(self.device)
target_patches = target_patches.reshape(len(target_patches), -1, PATCH_SIZE).to(self.device)
# Pass the input_patches and input_masks through the encoder
outputs = self.encoder(input_patches, input_masks)["last_hidden_state"]
# Use selected_indices to form target_patches
target_patches = target_patches[selected_indices.bool()]
patch_features = outputs[selected_indices.bool()]
# Pass patch_features and target_patches through the decoder
return self.decoder(patch_features, target_patches)
class CLaMP2Model(PreTrainedModel):
def __init__(self,
music_config,
global_rank=None,
world_size=None,
text_model_name=TEXT_MODEL_NAME,
hidden_size=CLAMP2_HIDDEN_SIZE,
load_m3=CLAMP2_LOAD_M3):
super(CLaMP2Model, self).__init__(music_config)
self.text_model = AutoModel.from_pretrained(text_model_name) # Load the text model
self.text_proj = torch.nn.Linear(self.text_model.config.hidden_size, hidden_size) # Linear layer for text projections
torch.nn.init.normal_(self.text_proj.weight, std=0.02) # Initialize weights with normal distribution
self.music_model = M3PatchEncoder(music_config) # Initialize the music model
self.music_proj = torch.nn.Linear(M3_HIDDEN_SIZE, hidden_size) # Linear layer for music projections
torch.nn.init.normal_(self.music_proj.weight, std=0.02) # Initialize weights with normal distribution
if global_rank==None or world_size==None:
global_rank = 0
world_size = 1
self.loss_fn = ClipLoss(local_loss=False,
gather_with_grad=True,
cache_labels=False,
rank=global_rank,
world_size=world_size,
use_horovod=False)
if load_m3 and os.path.exists(M3_WEIGHTS_PATH):
checkpoint = torch.load(M3_WEIGHTS_PATH, map_location='cpu', weights_only=True)
decoder_config = GPT2Config(vocab_size=128,
n_positions=PATCH_SIZE,
n_embd=M3_HIDDEN_SIZE,
n_layer=TOKEN_NUM_LAYERS,
n_head=M3_HIDDEN_SIZE//64,
n_inner=M3_HIDDEN_SIZE*4)
model = M3Model(music_config, decoder_config)
model.load_state_dict(checkpoint['model'])
self.music_model = model.encoder
model = None
print(f"Successfully Loaded M3 Checkpoint from Epoch {checkpoint['epoch']} with loss {checkpoint['min_eval_loss']}")
def avg_pooling(self, input_features, input_masks):
input_masks = input_masks.unsqueeze(-1).to(self.device) # add a dimension to match the feature dimension
input_features = input_features * input_masks # apply mask to input_features
avg_pool = input_features.sum(dim=1) / input_masks.sum(dim=1) # calculate average pooling
return avg_pool
def get_text_features(self,
text_inputs,
text_masks,
get_normalized=False):
text_features = self.text_model(text_inputs.to(self.device),
attention_mask=text_masks.to(self.device))['last_hidden_state']
if get_normalized:
text_features = self.avg_pooling(text_features, text_masks)
text_features = self.text_proj(text_features)
return text_features
def get_music_features(self,
music_inputs,
music_masks,
get_normalized=False):
music_features = self.music_model(music_inputs.to(self.device),
music_masks.to(self.device))['last_hidden_state']
if get_normalized:
music_features = self.avg_pooling(music_features, music_masks)
music_features = self.music_proj(music_features)
return music_features
def forward(self,
text_inputs, # [batch_size, seq_length]
text_masks, # [batch_size, seq_length]
music_inputs, # [batch_size, seq_length, hidden_size]
music_masks): # [batch_size, seq_length]
# Compute the text features
text_features = self.get_text_features(text_inputs, text_masks, get_normalized=True)
# Compute the music features
music_features = self.get_music_features(music_inputs, music_masks, get_normalized=True)
return self.loss_fn(text_features,
music_features,
LOGIT_SCALE,
output_dict=False)
def split_data(data, eval_ratio=EVAL_SPLIT):
random.shuffle(data)
split_idx = int(len(data)*eval_ratio)
eval_set = data[:split_idx]
train_set = data[split_idx:]
return train_set, eval_set
def mask_patches(target_patches, patchilizer, mode):
indices = list(range(len(target_patches)))
random.shuffle(indices)
selected_indices = indices[:math.ceil(M3_MASK_RATIO*len(indices))]
sorted_indices = sorted(selected_indices)
input_patches = torch.tensor(target_patches)
if mode=="eval":
choice = "original"
else:
choice = random.choices(["mask", "shuffle", "original"], weights=[0.8, 0.1, 0.1])[0]
if choice=="mask":
input_patches[sorted_indices] = torch.tensor([patchilizer.mask_token_id]*PATCH_SIZE)
elif choice=="shuffle":
for idx in sorted_indices:
patch = input_patches[idx]
try:
index_eos = (patch == patchilizer.eos_token_id).nonzero().item()
except:
index_eos = len(patch)
indices = list(range(1, index_eos))
random.shuffle(indices)
indices = [0] + indices + list(range(index_eos, len(patch)))
input_patches[idx] = patch[indices]
selected_indices = torch.zeros(len(target_patches))
selected_indices[sorted_indices] = 1.
return input_patches, selected_indices
def remove_instrument_info(item):
# remove instrument information from symbolic music
lines = re.findall(r'.*?\n|.*$', item)
lines = list(filter(None, lines))
if lines[0].split(" ")[0] == "ticks_per_beat":
type = "mtf"
else:
type = "abc"
cleaned_lines = []
for line in lines:
if type=="abc" and line.startswith("V:"):
# find the position of " nm=" or " snm="
nm_pos = line.find(" nm=")
snm_pos = line.find(" snm=")
# keep the part before " nm=" or " snm="
if nm_pos != -1:
line = line[:nm_pos]
elif snm_pos != -1:
line = line[:snm_pos]
if nm_pos != -1 or snm_pos != -1:
line += "\n"
elif type=="mtf" and line.startswith("program_change"):
line = " ".join(line.split(" ")[:-1]) + " 0\n"
cleaned_lines.append(line)
return ''.join(cleaned_lines)
|