clamp2 / code /train_clamp2.py
sander-wood's picture
Upload 32 files
3c428bc verified
raw
history blame
14.6 kB
import os
import json
import time
import wandb
import torch
import random
import numpy as np
from utils import *
from config import *
from tqdm import tqdm
from copy import deepcopy
import torch.distributed as dist
from torch.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import AutoTokenizer, BertConfig, get_constant_schedule_with_warmup
def list_files_in_json(json_path):
file_list = []
if os.path.exists(json_path):
with open(json_path, 'r', encoding='utf-8') as f:
for line in f:
item = json.loads(line)
file_list.append(item)
return file_list
def collate_batch(batch):
text_inputs, text_masks, music_inputs, music_masks = zip(*batch)
text_inputs = torch.stack(text_inputs)
text_masks = torch.stack(text_masks)
music_inputs = torch.stack(music_inputs)
music_masks = torch.stack(music_masks)
return text_inputs, text_masks, music_inputs, music_masks
class TextMusicDataset(Dataset):
def __init__(self, items, mode):
print("The number of "+mode+" data: "+str(len(items)))
self.items = items
self.mode = mode
if self.mode == 'train' or not EVAL_JSONL:
self.datapath = os.path.dirname(TRAIN_JSONL)
elif self.mode == 'eval':
self.datapath = os.path.dirname(EVAL_JSONL)
def text_dropout(self, item):
if random.random() < 0.5:
candidates = []
for key in item.keys():
if key not in ["summary_en", "summary_nen", "filepaths"]:
if item[key] == None:
continue
elif isinstance(item[key], str):
candidates.append(item[key])
elif isinstance(item[key], list):
candidates.extend(item[key])
candidates = list(set(candidates))
candidates = "\n".join(candidates)
candidates = candidates.split("\n")
selected_candidates = [c for c in candidates if len(c) > 0 and random.random() < 0.5]
if len(selected_candidates) == 0:
selected_candidates = candidates
random.shuffle(selected_candidates)
text = tokenizer.sep_token.join(selected_candidates)
else:
if random.random() < 0.5:
text = random.choice(item["summary_en"])
else:
text = random.choice(item["summary_nen"])["summary"]
return text
def random_truncate(self, input_tensor, max_length):
choices = ["head", "tail", "middle"]
choice = random.choice(choices)
if choice == "head" or self.mode == 'eval':
input_tensor = input_tensor[:max_length]
elif choice == "tail":
input_tensor = input_tensor[-max_length:]
elif choice == "middle":
start = random.randint(1, input_tensor.size(0)-max_length)
input_tensor = input_tensor[start:start+max_length]
return input_tensor
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
item = self.items[idx]
# randomly select text from the item
if self.mode == 'train' and TEXT_DROPOUT:
text = self.text_dropout(item)
else:
text = item["summary_en"][0]
# tokenize text and build mask for text tokens
text_inputs = tokenizer(text, return_tensors='pt')
text_inputs = text_inputs['input_ids'].squeeze(0)
if text_inputs.size(0) > MAX_TEXT_LENGTH:
text_inputs = self.random_truncate(text_inputs, MAX_TEXT_LENGTH)
text_masks = torch.ones(text_inputs.size(0))
# load music file
if self.mode == 'train':
filepath = random.choice(item["filepaths"])
else:
if item["filepaths"][0].endswith(".abc"):
filepath = item["filepaths"][0]
else:
filepath = item["filepaths"][1]
filepath = self.datapath + '/' + filepath
with open(filepath, "r", encoding="utf-8") as f:
item = f.read().replace("L:1/8\n", "") if filepath.endswith(".abc") else f.read()
# randomly remove instrument info from the music file
if random.random() < 0.9 and self.mode == 'train':
item = remove_instrument_info(item)
# mask music inputs
music_inputs = patchilizer.encode(item, add_special_patches=True, truncate=True, random_truncate=(self.mode=="train"))
music_inputs = torch.tensor(music_inputs)
music_masks = torch.ones(music_inputs.size(0))
# pad text inputs and masks
pad_indices = torch.ones(MAX_TEXT_LENGTH - text_inputs.size(0)).long() * tokenizer.pad_token_id
text_inputs = torch.cat((text_inputs, pad_indices), 0)
text_masks = torch.cat((text_masks, torch.zeros(MAX_TEXT_LENGTH - text_masks.size(0))), 0)
# pad music inputs and masks
pad_indices = torch.ones((PATCH_LENGTH - music_inputs.size(0), PATCH_SIZE)).long() * patchilizer.pad_token_id
music_inputs = torch.cat((music_inputs, pad_indices), 0)
music_masks = torch.cat((music_masks, torch.zeros(PATCH_LENGTH - music_masks.size(0))), 0)
return text_inputs, text_masks, music_inputs, music_masks
# call model with a batch of input
def process_one_batch(batch):
text_inputs, text_masks, music_inputs, music_masks = batch
loss = model(text_inputs,
text_masks,
music_inputs,
music_masks)
# Reduce the loss on GPU 0
if world_size > 1:
loss = loss.unsqueeze(0)
dist.reduce(loss, dst=0)
loss = loss / world_size
dist.broadcast(loss, src=0)
return loss.mean()
# do one epoch for training
def train_epoch(epoch):
tqdm_train_set = tqdm(train_set)
total_train_loss = 0
iter_idx = 1
model.train()
train_steps = (epoch-1)*len(train_set)
for batch in tqdm_train_set:
with autocast(device_type='cuda'):
loss = process_one_batch(batch)
scaler.scale(loss).backward()
total_train_loss += loss.item()
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
model.zero_grad(set_to_none=True)
tqdm_train_set.set_postfix({str(global_rank)+'_train_loss': total_train_loss / iter_idx})
train_steps += 1
# Log the training loss to wandb
if global_rank==0 and CLAMP2_WANDB_LOG:
wandb.log({"train_loss": total_train_loss / iter_idx}, step=train_steps)
iter_idx += 1
return total_train_loss / (iter_idx-1)
# do one epoch for eval
def eval_epoch():
tqdm_eval_set = tqdm(eval_set)
total_eval_loss = 0
iter_idx = 1
model.eval()
# Evaluate data for one epoch
for batch in tqdm_eval_set:
with torch.no_grad():
loss = process_one_batch(batch)
total_eval_loss += loss.item()
tqdm_eval_set.set_postfix({str(global_rank)+'_eval_loss': total_eval_loss / iter_idx})
iter_idx += 1
return total_eval_loss / (iter_idx-1)
# train and eval
if __name__ == "__main__":
# Set up distributed training
world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else 0
local_rank = int(os.environ['LOCAL_RANK']) if 'LOCAL_RANK' in os.environ else 0
if world_size > 1:
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
dist.init_process_group(backend='nccl')
else:
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if CLAMP2_DETERMINISTIC:
seed = 42 + global_rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
m3_config = BertConfig(vocab_size=1,
hidden_size=M3_HIDDEN_SIZE,
num_hidden_layers=PATCH_NUM_LAYERS,
num_attention_heads=M3_HIDDEN_SIZE//64,
intermediate_size=M3_HIDDEN_SIZE*4,
max_position_embeddings=PATCH_LENGTH)
model = CLaMP2Model(m3_config,
global_rank,
world_size,
TEXT_MODEL_NAME,
CLAMP2_HIDDEN_SIZE,
CLAMP2_LOAD_M3)
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
patchilizer = M3Patchilizer()
# print parameter number
print("Parameter Number: "+str(sum(p.numel() for p in model.parameters() if p.requires_grad)))
if world_size > 1:
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
scaler = GradScaler()
optimizer = torch.optim.AdamW(model.parameters(), lr=CLAMP2_LEARNING_RATE)
if CLAMP2_WANDB_LOG and global_rank==0:
# Initialize wandb
if WANDB_KEY:
wandb.login(key=WANDB_KEY)
wandb.init(project="clamp2",
name=CLAMP2_WEIGHTS_PATH.replace("weights_", "").replace(".pth", ""))
# load filenames under train and eval folder
train_files = list_files_in_json(TRAIN_JSONL)
eval_files = list_files_in_json(EVAL_JSONL)
if len(eval_files)==0:
train_files, eval_files = split_data(train_files)
train_batch_nums = int(len(train_files) / CLAMP2_BATCH_SIZE)
eval_batch_nums = int(len(eval_files) / CLAMP2_BATCH_SIZE)
train_files = train_files[:train_batch_nums*CLAMP2_BATCH_SIZE]
eval_files = eval_files[:eval_batch_nums*CLAMP2_BATCH_SIZE]
train_set = TextMusicDataset(train_files, 'train')
eval_set = TextMusicDataset(eval_files, 'eval')
train_sampler = DistributedSampler(train_set, num_replicas=world_size, rank=global_rank)
eval_sampler = DistributedSampler(eval_set, num_replicas=world_size, rank=global_rank)
train_set = DataLoader(train_set, batch_size=CLAMP2_BATCH_SIZE, collate_fn=collate_batch, sampler=train_sampler, shuffle = (train_sampler is None))
eval_set = DataLoader(eval_set, batch_size=CLAMP2_BATCH_SIZE, collate_fn=collate_batch, sampler=eval_sampler, shuffle = (train_sampler is None))
lr_scheduler = get_constant_schedule_with_warmup(optimizer = optimizer, num_warmup_steps = 1000)
if CLAMP2_LOAD_CKPT and os.path.exists(CLAMP2_WEIGHTS_PATH):
# Load checkpoint to CPU
checkpoint = torch.load(CLAMP2_WEIGHTS_PATH, map_location='cpu', weights_only=True)
# Here, model is assumed to be on GPU
# Load state dict to CPU model first, then move the model to GPU
if torch.cuda.device_count() > 1:
# If you have a DataParallel model, you need to load to model.module instead
cpu_model = deepcopy(model.module)
cpu_model.load_state_dict(checkpoint['model'])
model.module.load_state_dict(cpu_model.state_dict())
else:
# Load to a CPU clone of the model, then load back
cpu_model = deepcopy(model)
cpu_model.load_state_dict(checkpoint['model'])
model.load_state_dict(cpu_model.state_dict())
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_sched'])
pre_epoch = checkpoint['epoch']
best_epoch = checkpoint['best_epoch']
min_eval_loss = checkpoint['min_eval_loss']
print(f"Successfully Loaded Checkpoint from Epoch {checkpoint['epoch']} with loss {checkpoint['min_eval_loss']}")
checkpoint = None
else:
pre_epoch = 0
best_epoch = 0
min_eval_loss = float('inf')
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=CLAMP2_LEARNING_RATE)
for epoch in range(1+pre_epoch, CLAMP2_NUM_EPOCH+1):
train_sampler.set_epoch(epoch)
eval_sampler.set_epoch(epoch)
print('-' * 21 + "Epoch " + str(epoch) + '-' * 21)
train_loss = train_epoch(epoch)
eval_loss = eval_epoch()
if global_rank==0:
with open(CLAMP2_LOGS_PATH,'a') as f:
f.write("Epoch " + str(epoch) + "\ntrain_loss: " + str(train_loss) + "\neval_loss: " +str(eval_loss) + "\ntime: " + time.asctime(time.localtime(time.time())) + "\n\n")
if eval_loss < min_eval_loss:
best_epoch = epoch
min_eval_loss = eval_loss
checkpoint = {
'model': model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'min_eval_loss': min_eval_loss
}
torch.save(checkpoint, CLAMP2_WEIGHTS_PATH)
checkpoint = {
'model': model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'min_eval_loss': min_eval_loss
}
torch.save(checkpoint, "latest_"+CLAMP2_WEIGHTS_PATH)
if world_size > 1:
dist.barrier()
if global_rank==0:
print("Best Eval Epoch : "+str(best_epoch))
print("Min Eval Loss : "+str(min_eval_loss))