sander-wood commited on
Commit
08faf00
1 Parent(s): 9f2d8e8

Upload 5 files

Browse files
README.md CHANGED
@@ -1,3 +1,124 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CLaMP 2: Multimodal Music Information Retrieval Across 101 Languages Using Large Language Models
2
+
3
+ ![CLaMP 2 Overview](overview.jpg)
4
+
5
+ ## Overview
6
+ CLaMP 2 is a music information retrieval model compatible with 101 languages, designed to support both ABC notation (a text-based musical notation format) and MIDI (Musical Instrument Digital Interface). This repository provides a comprehensive suite of scripts for training models, extracting features, converting various musical data formats, generating multilingual summaries of music metadata using GPT-4, and performing music classification and semantic search tasks. By leveraging the multilingual capabilities of GPT-4, CLaMP 2 aims to enhance the accuracy and inclusivity of music retrieval across diverse linguistic and musical modalities.
7
+
8
+ ### Links
9
+ - [CLaMP 2 Code](https://github.com/sanderwood/clamp2)
10
+ - [CLaMP 2 Paper](https://arxiv.org/)
11
+ - [CLaMP 2 Model Weights](https://huggingface.co/sander-wood/clamp2/blob/main/weights_clamp2_h_size_768_lr_5e-05_batch_128_scale_1_t_length_128_t_model_FacebookAI_xlm-roberta-base_t_dropout_True_m3_True.pth)
12
+ - [M3 Model Weights](https://huggingface.co/sander-wood/clamp2/blob/main/weights_m3_p_size_64_p_length_512_t_layers_3_p_layers_12_h_size_768_lr_0.0001_batch_16_mask_0.45.pth)
13
+
14
+ Note: The model weights for both CLaMP 2 and M3 should be placed under the `code/` folder to ensure proper loading. Make sure the config hyperparameters are correctly set.
15
+
16
+ ## Repository Structure
17
+ The repository is organized into the following main directories:
18
+
19
+ - **`code/`**: Includes scripts for training the CLaMP 2 and M3 models and extracting features from music and text data. You can modify hyperparameters and file paths in the configuration files to suit your training needs.
20
+
21
+ - **`music_classification/`**: Contains scripts for performing classification tasks via linear probe using the extracted features. This directory includes utilities for training linear classification models and making predictions on new feature data.
22
+
23
+ - **`process_data/`**: Provides tools to convert between various musical data formats (ABC notation, MusicXML, MIDI, and MTF) and to summarize music metadata with GPT-4. Before using CLaMP 2 or M3, you should use these scripts to convert your files into interleaved ABC notation or MTF compatible with these models.
24
+
25
+ - **`semantic_search/`**: Provides scripts for evaluating model performance, conducting semantic searches, and calculating similarity metrics based on extracted feature vectors.
26
+
27
+ ## Getting Started
28
+ ### Environment Setup
29
+ To set up the environment for CLaMP 2, run the following commands:
30
+
31
+ ```bash
32
+ conda env create -f environment.yml
33
+ conda activate clamp2
34
+ ```
35
+
36
+ ### Data Preparation
37
+ 1. **Convert Files**: Navigate to the `process_data/` folder and convert your music files to a compatible format (interleaved ABC notation or MTF) suitable for CLaMP 2 and M3.
38
+ - Use the conversion scripts in this folder for tasks like converting MusicXML to ABC and MIDI to MTF.
39
+
40
+ - After collecting MusicXML (sheet music) or MIDI (performance data), perform the following operations to convert them into interleaved ABC notation or MTF respectively for model training:
41
+ 1. **Obtain Interleaved ABC Notation**:
42
+ - Convert MusicXML files to ABC using `batch_xml2abc.py`.
43
+ - Process the ABC files into interleaved notation using `batch_interleaved_abc.py`.
44
+ 2. **Obtain MTF**:
45
+ - Convert MIDI files to MTF format using `batch_midi2mtf.py`.
46
+ 3. **Convert Interleaved ABC Back to XML (Optional)**:
47
+ - Use `batch_xml2abc.py` to convert interleaved ABC files back to MusicXML.
48
+ 4. **Convert MTF Back to MIDI (Optional)**:
49
+ - Use `batch_mtf2midi.py` to convert MTF files back to MIDI format.
50
+
51
+ 2. **Generate Multilingual Metadata Summaries**: After converting the music files, the next step is to generate multilingual summaries of the music metadata. This is done using the `gpt4_summarize.py` script, which leverages the GPT-4 API to create structured summaries in both English and a randomly selected non-English language.
52
+
53
+ **Input Example**: The input to the summarization script consists of a JSON file representing the music metadata. Here’s an example of a music entry in JSON format:
54
+
55
+ ```json
56
+ {
57
+ "title": "Hard Times Come Again No More",
58
+ "composer": "Stephen Foster",
59
+ "genres": ["Children's Music", "Folk"],
60
+ "description": "\"Hard Times Come Again No More\" (sometimes referred to as \"Hard Times\") is an American parlor song written by Stephen Foster, reflecting themes of sorrow and hope.",
61
+ "lyrics": "Let us pause in life's pleasures and count its many tears,\nWhile we all sup sorrow with the poor;\nThere's a song that will linger forever in our ears;\nOh! Hard times come again no more.\n\nChorus:\n'Tis the song, the sigh of the weary,\nHard Times, hard times, come again no more.\nMany days you have lingered around my cabin door;\nOh! Hard times come again no more.\n\nWhile we seek mirth and beauty and music light and gay,\nThere are frail forms fainting at the door;\nThough their voices are silent, their pleading looks will say\nOh! Hard times come again no more.\nChorus\n\nThere's a pale weeping maiden who toils her life away,\nWith a worn heart whose better days are o'er:\nThough her voice would be merry, 'tis sighing all the day,\nOh! Hard times come again no more.\nChorus\n\n'Tis a sigh that is wafted across the troubled wave,\n'Tis a wail that is heard upon the shore\n'Tis a dirge that is murmured around the lowly grave\nOh! Hard times come again no more.\nChorus",
62
+ "tags": ["folk", "traditional", "bluegrass", "nostalgic", "heartfelt", "acoustic", "melancholic", "storytelling", "American roots", "resilience"],
63
+ "ensembles": ["Folk Ensemble"],
64
+ "instruments": ["Vocal", "Violin", "Tin whistle", "Guitar", "Banjo", "Tambourine"],
65
+ "filepaths": [
66
+ "abc/American_Music/Folk_Traditions/19th_Century/Stephen_Foster/Hard_Times_Come_Again_No_More.abc",
67
+ "mtf/American_Music/Folk_Traditions/19th_Century/Stephen_Foster/Hard_Times_Come_Again_No_More.mtf"
68
+ ]
69
+ }
70
+ ```
71
+
72
+ **Output Example**: The output will be a JSON file containing the structured summary in both English and a selected non-English language. Here’s an example of the expected output:
73
+
74
+ ```json
75
+ {
76
+ "title": "Hard Times Come Again No More",
77
+ "composer": "Stephen Foster",
78
+ "genres": ["Children's Music", "Folk"],
79
+ "description": "\"Hard Times Come Again No More\" (sometimes referred to as \"Hard Times\") is an American parlor song written by Stephen Foster, reflecting themes of sorrow and hope.",
80
+ "lyrics": "Let us pause in life's pleasures and count its many tears,\nWhile we all sup sorrow with the poor;\nThere's a song that will linger forever in our ears;\nOh! Hard times come again no more.\n\nChorus:\n'Tis the song, the sigh of the weary,\nHard Times, hard times, come again no more.\nMany days you have lingered around my cabin door;\nOh! Hard times come again no more.\n\nWhile we seek mirth and beauty and music light and gay,\nThere are frail forms fainting at the door;\nThough their voices are silent, their pleading looks will say\nOh! Hard times come again no more.\nChorus\n\nThere's a pale weeping maiden who toils her life away,\nWith a worn heart whose better days are o'er:\nThough her voice would be merry, 'tis sighing all the day,\nOh! Hard times come again no more.\nChorus\n\n'Tis a sigh that is wafted across the troubled wave,\n'Tis a wail that is heard upon the shore\n'Tis a dirge that is murmured around the lowly grave\nOh! Hard times come again no more.\nChorus",
81
+ "tags": ["folk", "traditional", "bluegrass", "nostalgic", "heartfelt", "acoustic", "melancholic", "storytelling", "American roots", "resilience"],
82
+ "ensembles": ["Folk Ensemble"],
83
+ "instruments": ["Vocal", "Violin", "Tin whistle", "Guitar", "Banjo", "Tambourine"],
84
+ "summary_en": "\"Hard Times Come Again No More,\" composed by Stephen Foster, is a poignant American parlor song that explores themes of sorrow and hope. The lyrics reflect on the contrast between life's pleasures and its hardships, inviting listeners to acknowledge both joy and suffering. With a heartfelt chorus that repeats the line \"Hard times come again no more,\" the song resonates with nostalgia and resilience. It is often performed by folk ensembles and features a variety of instruments, including vocals, violin, guitar, and banjo, encapsulating the spirit of American roots music.",
85
+ "summary_nen": {
86
+ "language": "Chinese (Simplified)",
87
+ "summary": "《艰难时光再无来临》是斯蒂芬·福斯特创作的一首感人至深的美国小歌厅歌曲,探讨了悲伤与希望的主题。歌词展现了生活的乐趣与艰辛之间的对比,邀请听众去感受快乐与痛苦的交织。歌曲中那句反复吟唱的“艰难时光再无来临”深情地表达了怀旧与坚韧。它常常由民谣乐队演奏,伴随着人声、小提琴、吉他和班卓琴等多种乐器,生动地展现了美国根源音乐的独特魅力。"
88
+ },
89
+ "filepaths": [
90
+ "abc/American_Music/Folk_Traditions/19th_Century/Stephen_Foster/Hard_Times_Come_Again_No_More.abc",
91
+ "mtf/American_Music/Folk_Traditions/19th_Century/Stephen_Foster/Hard_Times_Come_Again_No_More.mtf"
92
+ ]
93
+ }
94
+ ```
95
+
96
+ ### Training and Feature Extraction
97
+ 2. **Training Models**: If you want to train CLaMP 2 or M3 models, check the scripts in the `code/` folder.
98
+ - Modify the `config.py` files to set your training hyperparameters and paths.
99
+
100
+ 3. **Extracting Features**: After training, or if you have pre-trained models, you can extract features from your data using the respective scripts in the `code/` folder.
101
+
102
+ ### Classification and Retrieval
103
+ 4. **Classification**: If you need to classify the extracted features, navigate to the `music_classification/` directory.
104
+ - Here, you'll find scripts to train linear classification models and perform inference on new data.
105
+
106
+ 5. **Semantic Search**: To perform semantic searches using the extracted features, refer to the scripts in the `semantic_search/` folder.
107
+
108
+ ## Benchmarks
109
+ Benchmark datasets related to the experiments conducted with CLaMP 2 and M3, including data used for classification and semantic search tasks, are available in the `benchmarks.zip` file. Note that the `benchmarks.z01` file is required for proper extraction of the contents from `benchmarks.zip`.
110
+
111
+ ## Citation
112
+
113
+ If you use CLaMP 2 or M3 in your research, please cite the following paper:
114
+
115
+ ```bibtex
116
+ @inproceedings{clamp2,
117
+ title={CLaMP 2: Multimodal Music Information Retrieval Across 101 Languages Using Large Language Models},
118
+ author={Author Name and Coauthor Name},
119
+ booktitle={Proceedings of the Conference on Music Information Retrieval},
120
+ year={2024},
121
+ publisher={Publisher Name},
122
+ address={Conference Location},
123
+ url={https://placeholder.url}
124
+ }
logs_clamp2_h_size_768_lr_5e-05_batch_128_scale_1_t_length_128_t_model_FacebookAI_xlm-roberta-base_t_dropout_True_m3_True.txt ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Epoch 1
2
+ train_loss: 4.135209383230448
3
+ eval_loss: 1.9609466393788655
4
+ time: Sun Sep 15 16:53:25 2024
5
+
6
+ Epoch 2
7
+ train_loss: 2.9014642586344244
8
+ eval_loss: 1.518966309229533
9
+ time: Sun Sep 15 18:43:11 2024
10
+
11
+ Epoch 3
12
+ train_loss: 2.5554833216573805
13
+ eval_loss: 1.2929850498835245
14
+ time: Sun Sep 15 20:35:14 2024
15
+
16
+ Epoch 4
17
+ train_loss: 2.3372960954320985
18
+ eval_loss: 1.1918509085973104
19
+ time: Sun Sep 15 22:23:17 2024
20
+
21
+ Epoch 5
22
+ train_loss: 2.183457492896627
23
+ eval_loss: 1.0725035190582275
24
+ time: Mon Sep 16 00:11:33 2024
25
+
26
+ Epoch 6
27
+ train_loss: 2.0555087922796216
28
+ eval_loss: 0.9798878033955892
29
+ time: Mon Sep 16 01:59:41 2024
30
+
31
+ Epoch 7
32
+ train_loss: 1.9556777615308922
33
+ eval_loss: 0.9242686867713928
34
+ time: Mon Sep 16 03:47:45 2024
35
+
36
+ Epoch 8
37
+ train_loss: 1.8689270445336208
38
+ eval_loss: 0.8476833502451578
39
+ time: Mon Sep 16 05:35:55 2024
40
+
41
+ Epoch 9
42
+ train_loss: 1.7932923043361795
43
+ eval_loss: 0.8043208519617716
44
+ time: Mon Sep 16 07:24:40 2024
45
+
46
+ Epoch 10
47
+ train_loss: 1.726651672090251
48
+ eval_loss: 0.7419429302215577
49
+ time: Mon Sep 16 09:12:24 2024
50
+
51
+ Epoch 11
52
+ train_loss: 1.6657210920084013
53
+ eval_loss: 0.7209376732508341
54
+ time: Mon Sep 16 11:01:02 2024
55
+
56
+ Epoch 12
57
+ train_loss: 1.6131336856822078
58
+ eval_loss: 0.6950737277666728
59
+ time: Mon Sep 16 12:50:07 2024
60
+
61
+ Epoch 13
62
+ train_loss: 1.5601606700647368
63
+ eval_loss: 0.652581254641215
64
+ time: Mon Sep 16 14:40:19 2024
65
+
66
+ Epoch 14
67
+ train_loss: 1.5198849670231784
68
+ eval_loss: 0.5868058403333029
69
+ time: Mon Sep 16 16:30:09 2024
70
+
71
+ Epoch 15
72
+ train_loss: 1.4755114693644882
73
+ eval_loss: 0.5867449243863424
74
+ time: Mon Sep 16 18:20:11 2024
75
+
76
+ Epoch 16
77
+ train_loss: 1.4336211351749464
78
+ eval_loss: 0.5479268968105316
79
+ time: Mon Sep 16 20:10:42 2024
80
+
81
+ Epoch 17
82
+ train_loss: 1.4039166571722088
83
+ eval_loss: 0.5280438164869944
84
+ time: Mon Sep 16 22:01:01 2024
85
+
86
+ Epoch 18
87
+ train_loss: 1.365380759842085
88
+ eval_loss: 0.5008598109086354
89
+ time: Mon Sep 16 23:51:36 2024
90
+
91
+ Epoch 19
92
+ train_loss: 1.332988672848894
93
+ eval_loss: 0.46479900081952413
94
+ time: Tue Sep 17 01:41:49 2024
95
+
96
+ Epoch 20
97
+ train_loss: 1.3014001791981087
98
+ eval_loss: 0.45230263272921245
99
+ time: Tue Sep 17 03:33:12 2024
100
+
101
+ Epoch 21
102
+ train_loss: 1.2688752540577755
103
+ eval_loss: 0.4297992348670959
104
+ time: Tue Sep 17 05:23:40 2024
105
+
106
+ Epoch 22
107
+ train_loss: 1.2425967695381415
108
+ eval_loss: 0.4219102164109548
109
+ time: Tue Sep 17 07:14:26 2024
110
+
111
+ Epoch 23
112
+ train_loss: 1.216824040410488
113
+ eval_loss: 0.40282649795214337
114
+ time: Tue Sep 17 09:05:53 2024
115
+
116
+ Epoch 24
117
+ train_loss: 1.1875996505747286
118
+ eval_loss: 0.36659018794695536
119
+ time: Tue Sep 17 10:56:46 2024
120
+
121
+ Epoch 25
122
+ train_loss: 1.1670776548255222
123
+ eval_loss: 0.36906688412030536
124
+ time: Tue Sep 17 12:47:39 2024
125
+
126
+ Epoch 26
127
+ train_loss: 1.1426405137974536
128
+ eval_loss: 0.3478178918361664
129
+ time: Tue Sep 17 14:38:34 2024
130
+
131
+ Epoch 27
132
+ train_loss: 1.1208335824466733
133
+ eval_loss: 0.33407697081565857
134
+ time: Tue Sep 17 16:28:45 2024
135
+
136
+ Epoch 28
137
+ train_loss: 1.0998876758880667
138
+ eval_loss: 0.33792892495791116
139
+ time: Tue Sep 17 18:19:59 2024
140
+
141
+ Epoch 29
142
+ train_loss: 1.0769698478377083
143
+ eval_loss: 0.3026650925477346
144
+ time: Tue Sep 17 20:11:16 2024
145
+
146
+ Epoch 30
147
+ train_loss: 1.0587592209657248
148
+ eval_loss: 0.2914476583401362
149
+ time: Tue Sep 17 22:03:30 2024
150
+
151
+ Epoch 31
152
+ train_loss: 1.0384011404245468
153
+ eval_loss: 0.27578969597816466
154
+ time: Tue Sep 17 23:55:15 2024
155
+
156
+ Epoch 32
157
+ train_loss: 1.0233595809527622
158
+ eval_loss: 0.2651842157046
159
+ time: Wed Sep 18 01:46:45 2024
160
+
161
+ Epoch 33
162
+ train_loss: 1.001824217418977
163
+ eval_loss: 0.2630385269721349
164
+ time: Wed Sep 18 03:39:08 2024
165
+
166
+ Epoch 34
167
+ train_loss: 0.9853754720520442
168
+ eval_loss: 0.25253995358943937
169
+ time: Wed Sep 18 05:30:33 2024
170
+
171
+ Epoch 35
172
+ train_loss: 0.9676362536067821
173
+ eval_loss: 0.24096360007921855
174
+ time: Wed Sep 18 07:22:09 2024
175
+
176
+ Epoch 36
177
+ train_loss: 0.9507065269691086
178
+ eval_loss: 0.2413844664891561
179
+ time: Wed Sep 18 09:12:59 2024
180
+
181
+ Epoch 37
182
+ train_loss: 0.9362979678186832
183
+ eval_loss: 0.23412639300028484
184
+ time: Wed Sep 18 11:04:09 2024
185
+
186
+ Epoch 38
187
+ train_loss: 0.9174621180856977
188
+ eval_loss: 0.21386308073997498
189
+ time: Wed Sep 18 12:54:52 2024
190
+
191
+ Epoch 39
192
+ train_loss: 0.9090870427650668
193
+ eval_loss: 0.19962686796983084
194
+ time: Wed Sep 18 14:45:52 2024
195
+
196
+ Epoch 40
197
+ train_loss: 0.8918763521271409
198
+ eval_loss: 0.20026112000147503
199
+ time: Wed Sep 18 16:36:37 2024
200
+
201
+ Epoch 41
202
+ train_loss: 0.8786202421428222
203
+ eval_loss: 0.18366556564966838
204
+ time: Wed Sep 18 18:27:31 2024
205
+
206
+ Epoch 42
207
+ train_loss: 0.8670675420604148
208
+ eval_loss: 0.17908457616964976
209
+ time: Wed Sep 18 20:18:16 2024
210
+
211
+ Epoch 43
212
+ train_loss: 0.8505593872931582
213
+ eval_loss: 0.17053016225496928
214
+ time: Wed Sep 18 22:10:39 2024
215
+
216
+ Epoch 44
217
+ train_loss: 0.8421949260766888
218
+ eval_loss: 0.17344878117243448
219
+ time: Thu Sep 19 00:02:24 2024
220
+
221
+ Epoch 45
222
+ train_loss: 0.8267569324702205
223
+ eval_loss: 0.1591893643140793
224
+ time: Thu Sep 19 01:53:48 2024
225
+
226
+ Epoch 46
227
+ train_loss: 0.8144617894466949
228
+ eval_loss: 0.15313500861326854
229
+ time: Thu Sep 19 03:44:58 2024
230
+
231
+ Epoch 47
232
+ train_loss: 0.8041844731303666
233
+ eval_loss: 0.14998503575722377
234
+ time: Thu Sep 19 05:36:50 2024
235
+
236
+ Epoch 48
237
+ train_loss: 0.7938160687423412
238
+ eval_loss: 0.1401842971642812
239
+ time: Thu Sep 19 07:28:21 2024
240
+
241
+ Epoch 49
242
+ train_loss: 0.7808867423096515
243
+ eval_loss: 0.1368137091398239
244
+ time: Thu Sep 19 09:20:09 2024
245
+
246
+ Epoch 50
247
+ train_loss: 0.7702171771933628
248
+ eval_loss: 0.13333487262328467
249
+ time: Thu Sep 19 11:12:37 2024
250
+
251
+ Epoch 51
252
+ train_loss: 0.7604444062967384
253
+ eval_loss: 0.13119754443566004
254
+ time: Thu Sep 19 13:04:26 2024
255
+
256
+ Epoch 52
257
+ train_loss: 0.7496546459894258
258
+ eval_loss: 0.1236343190073967
259
+ time: Thu Sep 19 14:55:53 2024
260
+
261
+ Epoch 53
262
+ train_loss: 0.7406523988345118
263
+ eval_loss: 0.12237562835216523
264
+ time: Thu Sep 19 16:47:51 2024
265
+
266
+ Epoch 54
267
+ train_loss: 0.7331518270251398
268
+ eval_loss: 0.11441469887892405
269
+ time: Thu Sep 19 18:38:48 2024
270
+
271
+ Epoch 55
272
+ train_loss: 0.7238280263746373
273
+ eval_loss: 0.10651812156041464
274
+ time: Thu Sep 19 20:29:18 2024
275
+
276
+ Epoch 56
277
+ train_loss: 0.7141688125488486
278
+ eval_loss: 0.10959143290917078
279
+ time: Thu Sep 19 22:19:28 2024
280
+
281
+ Epoch 57
282
+ train_loss: 0.7053173944645842
283
+ eval_loss: 0.10957898745934168
284
+ time: Fri Sep 20 00:10:06 2024
285
+
286
+ Epoch 58
287
+ train_loss: 0.6992166797548109
288
+ eval_loss: 0.09759224901596705
289
+ time: Fri Sep 20 02:01:02 2024
290
+
291
+ Epoch 59
292
+ train_loss: 0.6855367768623795
293
+ eval_loss: 0.10631066560745239
294
+ time: Fri Sep 20 03:51:25 2024
295
+
296
+ Epoch 60
297
+ train_loss: 0.6812366953699432
298
+ eval_loss: 0.08681503732999166
299
+ time: Fri Sep 20 05:41:32 2024
300
+
301
+ Epoch 61
302
+ train_loss: 0.6744320154854127
303
+ eval_loss: 0.08995070978999138
304
+ time: Fri Sep 20 07:32:33 2024
305
+
306
+ Epoch 62
307
+ train_loss: 0.6627048003782218
308
+ eval_loss: 0.08492780551314354
309
+ time: Fri Sep 20 09:22:52 2024
310
+
311
+ Epoch 63
312
+ train_loss: 0.6554694614403961
313
+ eval_loss: 0.09110054125388463
314
+ time: Fri Sep 20 11:15:14 2024
315
+
316
+ Epoch 64
317
+ train_loss: 0.6519363358224428
318
+ eval_loss: 0.08603844990332922
319
+ time: Fri Sep 20 13:05:45 2024
320
+
321
+ Epoch 65
322
+ train_loss: 0.6432196787488694
323
+ eval_loss: 0.07920929342508316
324
+ time: Fri Sep 20 14:56:27 2024
325
+
326
+ Epoch 66
327
+ train_loss: 0.6355774498505016
328
+ eval_loss: 0.08108622878789902
329
+ time: Fri Sep 20 16:47:00 2024
330
+
331
+ Epoch 67
332
+ train_loss: 0.628098195042665
333
+ eval_loss: 0.0835166151324908
334
+ time: Fri Sep 20 18:37:19 2024
335
+
336
+ Epoch 68
337
+ train_loss: 0.6229319736150211
338
+ eval_loss: 0.08126899500687917
339
+ time: Fri Sep 20 20:27:49 2024
340
+
341
+ Epoch 69
342
+ train_loss: 0.6162204064685376
343
+ eval_loss: 0.07405624414483707
344
+ time: Fri Sep 20 22:18:28 2024
345
+
346
+ Epoch 70
347
+ train_loss: 0.6093617768645045
348
+ eval_loss: 0.07916868552565574
349
+ time: Sat Sep 21 00:10:02 2024
350
+
351
+ Epoch 71
352
+ train_loss: 0.603765148576412
353
+ eval_loss: 0.07368899683157602
354
+ time: Sat Sep 21 02:00:29 2024
355
+
356
+ Epoch 72
357
+ train_loss: 0.5988557130088281
358
+ eval_loss: 0.06763924509286881
359
+ time: Sat Sep 21 03:51:46 2024
360
+
361
+ Epoch 73
362
+ train_loss: 0.590835969827209
363
+ eval_loss: 0.07139033873875936
364
+ time: Sat Sep 21 05:43:51 2024
365
+
366
+ Epoch 74
367
+ train_loss: 0.5864904869113879
368
+ eval_loss: 0.06859012718002001
369
+ time: Sat Sep 21 07:34:23 2024
370
+
371
+ Epoch 75
372
+ train_loss: 0.5819329118342274
373
+ eval_loss: 0.07611284777522087
374
+ time: Sat Sep 21 09:25:24 2024
375
+
376
+ Epoch 76
377
+ train_loss: 0.5750655913014898
378
+ eval_loss: 0.06813529431819916
379
+ time: Sat Sep 21 11:16:26 2024
380
+
381
+ Epoch 77
382
+ train_loss: 0.5703848759963817
383
+ eval_loss: 0.07192744488517443
384
+ time: Sat Sep 21 13:07:32 2024
385
+
386
+ Epoch 78
387
+ train_loss: 0.5666614368024667
388
+ eval_loss: 0.06931692684690158
389
+ time: Sat Sep 21 14:59:16 2024
390
+
391
+ Epoch 79
392
+ train_loss: 0.5610024514409998
393
+ eval_loss: 0.06487631574273109
394
+ time: Sat Sep 21 16:50:56 2024
395
+
396
+ Epoch 80
397
+ train_loss: 0.5552226794301296
398
+ eval_loss: 0.06034566586216291
399
+ time: Sat Sep 21 18:43:49 2024
400
+
401
+ Epoch 81
402
+ train_loss: 0.5512203840912394
403
+ eval_loss: 0.05962909683585167
404
+ time: Sat Sep 21 20:36:01 2024
405
+
406
+ Epoch 82
407
+ train_loss: 0.5477618443893468
408
+ eval_loss: 0.05546447386344274
409
+ time: Sat Sep 21 22:28:13 2024
410
+
411
+ Epoch 83
412
+ train_loss: 0.5428704522615506
413
+ eval_loss: 0.05013169844945272
414
+ time: Sun Sep 22 00:21:20 2024
415
+
416
+ Epoch 84
417
+ train_loss: 0.5396500316264258
418
+ eval_loss: 0.062498694161574046
419
+ time: Sun Sep 22 02:13:07 2024
420
+
421
+ Epoch 85
422
+ train_loss: 0.5349479554715307
423
+ eval_loss: 0.06073434228698413
424
+ time: Sun Sep 22 04:05:17 2024
425
+
426
+ Epoch 86
427
+ train_loss: 0.5292192482811466
428
+ eval_loss: 0.05734321524699529
429
+ time: Sun Sep 22 05:57:05 2024
430
+
431
+ Epoch 87
432
+ train_loss: 0.5249555090607058
433
+ eval_loss: 0.05274935985604922
434
+ time: Sun Sep 22 07:48:52 2024
435
+
436
+ Epoch 88
437
+ train_loss: 0.523276918144503
438
+ eval_loss: 0.05601314604282379
439
+ time: Sun Sep 22 09:41:05 2024
440
+
441
+ Epoch 89
442
+ train_loss: 0.5179934711230115
443
+ eval_loss: 0.057493301729361214
444
+ time: Sun Sep 22 11:33:47 2024
445
+
446
+ Epoch 90
447
+ train_loss: 0.5129834874146376
448
+ eval_loss: 0.05289425750573476
449
+ time: Sun Sep 22 13:25:54 2024
450
+
451
+ Epoch 91
452
+ train_loss: 0.5104886514866054
453
+ eval_loss: 0.0586332509915034
454
+ time: Sun Sep 22 15:18:13 2024
455
+
456
+ Epoch 92
457
+ train_loss: 0.5067275374282622
458
+ eval_loss: 0.0489634457975626
459
+ time: Sun Sep 22 17:10:39 2024
460
+
461
+ Epoch 93
462
+ train_loss: 0.5038576471461468
463
+ eval_loss: 0.05257208868861198
464
+ time: Sun Sep 22 19:04:46 2024
465
+
466
+ Epoch 94
467
+ train_loss: 0.5013840998762528
468
+ eval_loss: 0.05249967947602272
469
+ time: Sun Sep 22 20:57:55 2024
470
+
471
+ Epoch 95
472
+ train_loss: 0.4949465335763684
473
+ eval_loss: 0.048154672731955846
474
+ time: Sun Sep 22 22:50:30 2024
475
+
476
+ Epoch 96
477
+ train_loss: 0.4925781255166608
478
+ eval_loss: 0.052830965568621956
479
+ time: Mon Sep 23 00:43:13 2024
480
+
481
+ Epoch 97
482
+ train_loss: 0.4875780233282
483
+ eval_loss: 0.04684837857882182
484
+ time: Mon Sep 23 02:35:38 2024
485
+
486
+ Epoch 98
487
+ train_loss: 0.4858591078021573
488
+ eval_loss: 0.04507673804958661
489
+ time: Mon Sep 23 04:28:25 2024
490
+
491
+ Epoch 99
492
+ train_loss: 0.4804891498405977
493
+ eval_loss: 0.048148307204246524
494
+ time: Mon Sep 23 06:21:11 2024
495
+
496
+ Epoch 100
497
+ train_loss: 0.4782898508661265
498
+ eval_loss: 0.044317328557372096
499
+ time: Mon Sep 23 08:13:38 2024
500
+
logs_m3_p_size_64_p_length_512_t_layers_3_p_layers_12_h_size_768_lr_0.0001_batch_16_mask_0.45.txt ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Epoch 1
2
+ train_loss: 0.3055062843047765
3
+ eval_loss: 0.03727418192925584
4
+ time: Wed Aug 7 08:54:27 2024
5
+
6
+ Epoch 2
7
+ train_loss: 0.1718286834194018
8
+ eval_loss: 0.020085958587123625
9
+ time: Wed Aug 7 14:38:40 2024
10
+
11
+ Epoch 3
12
+ train_loss: 0.1476379437283353
13
+ eval_loss: 0.013794219702922342
14
+ time: Wed Aug 7 20:24:50 2024
15
+
16
+ Epoch 4
17
+ train_loss: 0.13554848474242498
18
+ eval_loss: 0.011902455668817844
19
+ time: Thu Aug 8 02:13:14 2024
20
+
21
+ Epoch 5
22
+ train_loss: 0.12781724531702496
23
+ eval_loss: 0.008929020740909163
24
+ time: Thu Aug 8 08:00:32 2024
25
+
26
+ Epoch 6
27
+ train_loss: 0.12264176163121285
28
+ eval_loss: 0.008453744098166877
29
+ time: Thu Aug 8 13:47:12 2024
30
+
31
+ Epoch 7
32
+ train_loss: 0.11872020949762974
33
+ eval_loss: 0.007165850172573819
34
+ time: Thu Aug 8 19:34:09 2024
35
+
36
+ Epoch 8
37
+ train_loss: 0.1153576639058103
38
+ eval_loss: 0.006601243383027142
39
+ time: Fri Aug 9 01:22:19 2024
40
+
41
+ Epoch 9
42
+ train_loss: 0.11312788720856465
43
+ eval_loss: 0.005973297544609645
44
+ time: Fri Aug 9 07:11:25 2024
45
+
46
+ Epoch 10
47
+ train_loss: 0.11096722687304313
48
+ eval_loss: 0.005796642405204946
49
+ time: Fri Aug 9 12:59:13 2024
50
+
51
+ Epoch 11
52
+ train_loss: 0.10913465011501206
53
+ eval_loss: 0.005249736892483845
54
+ time: Fri Aug 9 18:46:14 2024
55
+
56
+ Epoch 12
57
+ train_loss: 0.10780615577682347
58
+ eval_loss: 0.005115668955435858
59
+ time: Sat Aug 10 00:34:28 2024
60
+
61
+ Epoch 13
62
+ train_loss: 0.10650418949283817
63
+ eval_loss: 0.00475350690255028
64
+ time: Sat Aug 10 06:22:51 2024
65
+
66
+ Epoch 14
67
+ train_loss: 0.10524643352798381
68
+ eval_loss: 0.004583307054632575
69
+ time: Sat Aug 10 12:11:18 2024
70
+
71
+ Epoch 15
72
+ train_loss: 0.1041887047117438
73
+ eval_loss: 0.004289783886142609
74
+ time: Sat Aug 10 17:59:48 2024
75
+
76
+ Epoch 16
77
+ train_loss: 0.10343191375801945
78
+ eval_loss: 0.004421581262192111
79
+ time: Sat Aug 10 23:47:37 2024
80
+
81
+ Epoch 17
82
+ train_loss: 0.10256196519161385
83
+ eval_loss: 0.004104017818401634
84
+ time: Sun Aug 11 05:35:49 2024
85
+
86
+ Epoch 18
87
+ train_loss: 0.10170993055767087
88
+ eval_loss: 0.0039769458375234585
89
+ time: Sun Aug 11 11:23:39 2024
90
+
91
+ Epoch 19
92
+ train_loss: 0.1011880517951369
93
+ eval_loss: 0.0039005329324529833
94
+ time: Sun Aug 11 17:11:19 2024
95
+
96
+ Epoch 20
97
+ train_loss: 0.10030771156829077
98
+ eval_loss: 0.0036845325137673237
99
+ time: Sun Aug 11 22:59:49 2024
100
+
101
+ Epoch 21
102
+ train_loss: 0.09972109616302548
103
+ eval_loss: 0.0038503893043940205
104
+ time: Mon Aug 12 04:48:03 2024
105
+
106
+ Epoch 22
107
+ train_loss: 0.09932596696744844
108
+ eval_loss: 0.00370702411211194
109
+ time: Mon Aug 12 10:36:32 2024
110
+
111
+ Epoch 23
112
+ train_loss: 0.09888291950362459
113
+ eval_loss: 0.0034573812171313834
114
+ time: Mon Aug 12 16:24:55 2024
115
+
116
+ Epoch 24
117
+ train_loss: 0.09852503939581284
118
+ eval_loss: 0.003370235667697582
119
+ time: Mon Aug 12 22:12:14 2024
120
+
121
+ Epoch 25
122
+ train_loss: 0.09825884147004627
123
+ eval_loss: 0.00346387299475209
124
+ time: Tue Aug 13 04:00:42 2024
125
+
126
+ Epoch 26
127
+ train_loss: 0.09756856258879791
128
+ eval_loss: 0.0033276399650575615
129
+ time: Tue Aug 13 09:49:22 2024
130
+
131
+ Epoch 27
132
+ train_loss: 0.09730380131801182
133
+ eval_loss: 0.003326884365762399
134
+ time: Tue Aug 13 15:36:05 2024
135
+
136
+ Epoch 28
137
+ train_loss: 0.09687296288584166
138
+ eval_loss: 0.0034621171255395573
139
+ time: Tue Aug 13 21:23:24 2024
140
+
141
+ Epoch 29
142
+ train_loss: 0.09668537175198876
143
+ eval_loss: 0.003284947640647648
144
+ time: Wed Aug 14 03:10:21 2024
145
+
146
+ Epoch 30
147
+ train_loss: 0.09628572566572022
148
+ eval_loss: 0.003119471057549999
149
+ time: Wed Aug 14 08:56:45 2024
150
+
151
+ Epoch 31
152
+ train_loss: 0.09617123452549026
153
+ eval_loss: 0.003124797866062776
154
+ time: Wed Aug 14 14:43:12 2024
155
+
156
+ Epoch 32
157
+ train_loss: 0.09578377932399237
158
+ eval_loss: 0.0030736677601092537
159
+ time: Wed Aug 14 20:31:01 2024
160
+
161
+ Epoch 33
162
+ train_loss: 0.09558304869954821
163
+ eval_loss: 0.003178201471396451
164
+ time: Thu Aug 15 02:19:14 2024
165
+
166
+ Epoch 34
167
+ train_loss: 0.0952804450174092
168
+ eval_loss: 0.0030847328114775225
169
+ time: Thu Aug 15 08:06:29 2024
170
+
171
+ Epoch 35
172
+ train_loss: 0.09513826066486042
173
+ eval_loss: 0.00303873973446682
174
+ time: Thu Aug 15 13:52:17 2024
175
+
176
+ Epoch 36
177
+ train_loss: 0.09466769916316405
178
+ eval_loss: 0.0030122215467611258
179
+ time: Thu Aug 15 19:38:29 2024
180
+
181
+ Epoch 37
182
+ train_loss: 0.09465687754501316
183
+ eval_loss: 0.00289094522015785
184
+ time: Fri Aug 16 01:25:14 2024
185
+
186
+ Epoch 38
187
+ train_loss: 0.09435585222324992
188
+ eval_loss: 0.0030173959307773393
189
+ time: Fri Aug 16 07:11:56 2024
190
+
191
+ Epoch 39
192
+ train_loss: 0.09413478592045794
193
+ eval_loss: 0.002968058454507435
194
+ time: Fri Aug 16 12:59:16 2024
195
+
196
+ Epoch 40
197
+ train_loss: 0.09393180562734375
198
+ eval_loss: 0.0030673167865746948
199
+ time: Fri Aug 16 18:45:23 2024
200
+
201
+ Epoch 41
202
+ train_loss: 0.09365266143982799
203
+ eval_loss: 0.00287582161187937
204
+ time: Sat Aug 17 00:31:47 2024
205
+
206
+ Epoch 42
207
+ train_loss: 0.09359205519747489
208
+ eval_loss: 0.0027280030162997134
209
+ time: Sat Aug 17 06:18:32 2024
210
+
211
+ Epoch 43
212
+ train_loss: 0.09349238520961266
213
+ eval_loss: 0.0029261269570300787
214
+ time: Sat Aug 17 12:05:26 2024
215
+
216
+ Epoch 44
217
+ train_loss: 0.09324607778116949
218
+ eval_loss: 0.002691730654519444
219
+ time: Sat Aug 17 17:52:20 2024
220
+
221
+ Epoch 45
222
+ train_loss: 0.09310021795996155
223
+ eval_loss: 0.0028863806760858132
224
+ time: Sat Aug 17 23:38:57 2024
225
+
226
+ Epoch 46
227
+ train_loss: 0.09307358593283441
228
+ eval_loss: 0.002793597210717352
229
+ time: Sun Aug 18 05:25:42 2024
230
+
231
+ Epoch 47
232
+ train_loss: 0.09299390690766882
233
+ eval_loss: 0.0027052024821456098
234
+ time: Sun Aug 18 11:12:32 2024
235
+
236
+ Epoch 48
237
+ train_loss: 0.09253486422624911
238
+ eval_loss: 0.0027312307396534247
239
+ time: Sun Aug 18 16:59:16 2024
240
+
241
+ Epoch 49
242
+ train_loss: 0.09243107154309635
243
+ eval_loss: 0.002648197562936772
244
+ time: Sun Aug 18 22:46:41 2024
245
+
246
+ Epoch 50
247
+ train_loss: 0.09237845186490301
248
+ eval_loss: 0.0026844193827840284
249
+ time: Mon Aug 19 04:35:10 2024
250
+
251
+ Epoch 51
252
+ train_loss: 0.09231985249015236
253
+ eval_loss: 0.002708845011956738
254
+ time: Mon Aug 19 10:24:17 2024
255
+
256
+ Epoch 52
257
+ train_loss: 0.0922615721153286
258
+ eval_loss: 0.0035362059711223225
259
+ time: Mon Aug 19 16:11:39 2024
260
+
261
+ Epoch 53
262
+ train_loss: 0.09200190843071623
263
+ eval_loss: 0.0025848455890180064
264
+ time: Mon Aug 19 21:58:31 2024
265
+
266
+ Epoch 54
267
+ train_loss: 0.09200848002425245
268
+ eval_loss: 0.0026311414897881983
269
+ time: Tue Aug 20 03:45:36 2024
270
+
271
+ Epoch 55
272
+ train_loss: 0.09154813869071807
273
+ eval_loss: 0.0025586662145983823
274
+ time: Tue Aug 20 09:34:48 2024
275
+
276
+ Epoch 56
277
+ train_loss: 0.09162745474034129
278
+ eval_loss: 0.0026280648907143545
279
+ time: Tue Aug 20 15:23:23 2024
280
+
281
+ Epoch 57
282
+ train_loss: 0.09156280245772795
283
+ eval_loss: 0.002539119078534093
284
+ time: Tue Aug 20 21:11:25 2024
285
+
286
+ Epoch 58
287
+ train_loss: 0.09142590950099329
288
+ eval_loss: 0.0026369429265152866
289
+ time: Wed Aug 21 02:59:19 2024
290
+
291
+ Epoch 59
292
+ train_loss: 0.09139848643851392
293
+ eval_loss: 0.0024354966580356916
294
+ time: Wed Aug 21 08:46:23 2024
295
+
296
+ Epoch 60
297
+ train_loss: 0.09131192888740647
298
+ eval_loss: 0.0024594995301248277
299
+ time: Wed Aug 21 14:33:28 2024
300
+
301
+ Epoch 61
302
+ train_loss: 0.09122042933562911
303
+ eval_loss: 0.002616936316367883
304
+ time: Wed Aug 21 20:20:57 2024
305
+
306
+ Epoch 62
307
+ train_loss: 0.09109125168796305
308
+ eval_loss: 0.0025555431279884297
309
+ time: Thu Aug 22 02:08:45 2024
310
+
311
+ Epoch 63
312
+ train_loss: 0.09106527324403817
313
+ eval_loss: 0.0025145284593781213
314
+ time: Thu Aug 22 07:56:26 2024
315
+
316
+ Epoch 64
317
+ train_loss: 0.09095406525682191
318
+ eval_loss: 0.0025151555842959678
319
+ time: Thu Aug 22 13:45:57 2024
320
+
321
+ Epoch 65
322
+ train_loss: 0.09102793501718281
323
+ eval_loss: 0.0024135450126194563
324
+ time: Thu Aug 22 19:54:28 2024
325
+
326
+ Epoch 66
327
+ train_loss: 0.0908411063853937
328
+ eval_loss: 0.002460922076728368
329
+ time: Fri Aug 23 01:59:41 2024
330
+
331
+ Epoch 67
332
+ train_loss: 0.09070221083785855
333
+ eval_loss: 0.002453409551882543
334
+ time: Fri Aug 23 07:52:30 2024
335
+
336
+ Epoch 68
337
+ train_loss: 0.0906545008953897
338
+ eval_loss: 0.0024080786435031784
339
+ time: Fri Aug 23 13:41:28 2024
340
+
341
+ Epoch 69
342
+ train_loss: 0.0907353380525871
343
+ eval_loss: 0.0024573436347799147
344
+ time: Fri Aug 23 19:27:14 2024
345
+
346
+ Epoch 70
347
+ train_loss: 0.09040538104085095
348
+ eval_loss: 0.0023765437401249566
349
+ time: Sat Aug 24 01:14:45 2024
350
+
351
+ Epoch 71
352
+ train_loss: 0.09036114065518137
353
+ eval_loss: 0.0023877528348234226
354
+ time: Sat Aug 24 07:02:04 2024
355
+
356
+ Epoch 72
357
+ train_loss: 0.09037455027205546
358
+ eval_loss: 0.002315233082103814
359
+ time: Sat Aug 24 12:49:24 2024
360
+
361
+ Epoch 73
362
+ train_loss: 0.09026183628343257
363
+ eval_loss: 0.0024284060419643228
364
+ time: Sat Aug 24 18:35:36 2024
365
+
366
+ Epoch 74
367
+ train_loss: 0.09019025581511034
368
+ eval_loss: 0.002393116130206718
369
+ time: Sun Aug 25 00:21:29 2024
370
+
371
+ Epoch 75
372
+ train_loss: 0.089901714783446
373
+ eval_loss: 0.002298152916632467
374
+ time: Sun Aug 25 06:08:01 2024
375
+
376
+ Epoch 76
377
+ train_loss: 0.09018262871273484
378
+ eval_loss: 0.002273971366672482
379
+ time: Sun Aug 25 11:54:02 2024
380
+
381
+ Epoch 77
382
+ train_loss: 0.08998425874228
383
+ eval_loss: 0.002317420323379338
384
+ time: Sun Aug 25 17:44:05 2024
385
+
386
+ Epoch 78
387
+ train_loss: 0.08983653943919646
388
+ eval_loss: 0.0024391192159878743
389
+ time: Sun Aug 25 23:31:34 2024
390
+
391
+ Epoch 79
392
+ train_loss: 0.08981405456901183
393
+ eval_loss: 0.002319374949895317
394
+ time: Mon Aug 26 05:24:56 2024
395
+
396
+ Epoch 80
397
+ train_loss: 0.08974534569690559
398
+ eval_loss: 0.0023008979344151066
399
+ time: Mon Aug 26 11:28:33 2024
400
+
401
+ Epoch 81
402
+ train_loss: 0.08972110153310983
403
+ eval_loss: 0.002406696710865237
404
+ time: Mon Aug 26 17:33:30 2024
405
+
406
+ Epoch 82
407
+ train_loss: 0.0895689915361898
408
+ eval_loss: 0.002241936448434926
409
+ time: Mon Aug 26 23:39:15 2024
410
+
411
+ Epoch 83
412
+ train_loss: 0.08950625452328584
413
+ eval_loss: 0.002408353965493697
414
+ time: Tue Aug 27 05:37:59 2024
415
+
416
+ Epoch 84
417
+ train_loss: 0.08959725393084628
418
+ eval_loss: 0.0023435966142665455
419
+ time: Tue Aug 27 11:34:29 2024
420
+
421
+ Epoch 85
422
+ train_loss: 0.08970333726515986
423
+ eval_loss: 0.0023965956810233086
424
+ time: Tue Aug 27 17:27:31 2024
425
+
426
+ Epoch 86
427
+ train_loss: 0.08948115523227308
428
+ eval_loss: 0.002325803569256709
429
+ time: Tue Aug 27 23:19:43 2024
430
+
431
+ Epoch 87
432
+ train_loss: 0.08933937688654775
433
+ eval_loss: 0.0023552257988114647
434
+ time: Wed Aug 28 05:11:34 2024
435
+
436
+ Epoch 88
437
+ train_loss: 0.08938353908107184
438
+ eval_loss: 0.0024397599904794043
439
+ time: Wed Aug 28 11:01:23 2024
440
+
441
+ Epoch 89
442
+ train_loss: 0.08921640703096091
443
+ eval_loss: 0.002223708766084243
444
+ time: Wed Aug 28 16:50:21 2024
445
+
446
+ Epoch 90
447
+ train_loss: 0.08929300930090782
448
+ eval_loss: 0.0022849828316260303
449
+ time: Wed Aug 28 22:38:53 2024
450
+
451
+ Epoch 91
452
+ train_loss: 0.08910525214309825
453
+ eval_loss: 0.0022257193633186227
454
+ time: Thu Aug 29 04:35:16 2024
455
+
456
+ Epoch 92
457
+ train_loss: 0.08905495976636461
458
+ eval_loss: 0.0022299331251850137
459
+ time: Thu Aug 29 10:29:46 2024
460
+
461
+ Epoch 93
462
+ train_loss: 0.08890526102100955
463
+ eval_loss: 0.0022962711695463786
464
+ time: Thu Aug 29 16:23:49 2024
465
+
466
+ Epoch 94
467
+ train_loss: 0.08908289874104246
468
+ eval_loss: 0.002243622880820028
469
+ time: Thu Aug 29 22:15:42 2024
470
+
471
+ Epoch 95
472
+ train_loss: 0.08908785978677156
473
+ eval_loss: 0.0022457318524397784
474
+ time: Fri Aug 30 04:06:57 2024
475
+
476
+ Epoch 96
477
+ train_loss: 0.08888098475318565
478
+ eval_loss: 0.002224675611787346
479
+ time: Fri Aug 30 09:58:43 2024
480
+
481
+ Epoch 97
482
+ train_loss: 0.08888529259134526
483
+ eval_loss: 0.0021844924980664493
484
+ time: Fri Aug 30 15:50:16 2024
485
+
486
+ Epoch 98
487
+ train_loss: 0.08885388837534758
488
+ eval_loss: 0.0022109088076294288
489
+ time: Fri Aug 30 21:41:59 2024
490
+
491
+ Epoch 99
492
+ train_loss: 0.08873902663868657
493
+ eval_loss: 0.0022606451996653202
494
+ time: Sat Aug 31 03:34:46 2024
495
+
496
+ Epoch 100
497
+ train_loss: 0.08877080098666765
498
+ eval_loss: 0.002279470525367602
499
+ time: Sat Aug 31 09:28:38 2024
500
+
weights_clamp2_h_size_768_lr_5e-05_batch_128_scale_1_t_length_128_t_model_FacebookAI_xlm-roberta-base_t_dropout_True_m3_True.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f3ae78a878a1a585d7869b311ebeb6c869a823cd9f8d5f222d11857fd0bba8
3
+ size 4450182209
weights_m3_p_size_64_p_length_512_t_layers_3_p_layers_12_h_size_768_lr_0.0001_batch_16_mask_0.45.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c063f49e60d5811892bcf71acfa2a920ea8eae39491d031392180b0d1754dd7
3
+ size 1360692759