import os import json import time import wandb import torch import random import numpy as np from utils import * from config import * from tqdm import tqdm from copy import deepcopy import torch.distributed as dist from torch.amp import autocast, GradScaler from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from transformers import AutoTokenizer, BertConfig, get_constant_schedule_with_warmup def list_files_in_json(json_path): file_list = [] if os.path.exists(json_path): with open(json_path, 'r', encoding='utf-8') as f: for line in f: item = json.loads(line) file_list.append(item) return file_list def collate_batch(batch): text_inputs, text_masks, music_inputs, music_masks = zip(*batch) text_inputs = torch.stack(text_inputs) text_masks = torch.stack(text_masks) music_inputs = torch.stack(music_inputs) music_masks = torch.stack(music_masks) return text_inputs, text_masks, music_inputs, music_masks class TextMusicDataset(Dataset): def __init__(self, items, mode): print("The number of "+mode+" data: "+str(len(items))) self.items = items self.mode = mode if self.mode == 'train' or not EVAL_JSONL: self.datapath = os.path.dirname(TRAIN_JSONL) elif self.mode == 'eval': self.datapath = os.path.dirname(EVAL_JSONL) def text_dropout(self, item): if random.random() < 0.5: candidates = [] for key in item.keys(): if key not in ["summary_en", "summary_nen", "filepaths"]: if item[key] == None: continue elif isinstance(item[key], str): candidates.append(item[key]) elif isinstance(item[key], list): candidates.extend(item[key]) candidates = list(set(candidates)) candidates = "\n".join(candidates) candidates = candidates.split("\n") selected_candidates = [c for c in candidates if len(c) > 0 and random.random() < 0.5] if len(selected_candidates) == 0: selected_candidates = candidates random.shuffle(selected_candidates) text = tokenizer.sep_token.join(selected_candidates) else: if random.random() < 0.5: text = random.choice(item["summary_en"]) else: text = random.choice(item["summary_nen"])["summary"] return text def random_truncate(self, input_tensor, max_length): choices = ["head", "tail", "middle"] choice = random.choice(choices) if choice == "head" or self.mode == 'eval': input_tensor = input_tensor[:max_length] elif choice == "tail": input_tensor = input_tensor[-max_length:] elif choice == "middle": start = random.randint(1, input_tensor.size(0)-max_length) input_tensor = input_tensor[start:start+max_length] return input_tensor def __len__(self): return len(self.items) def __getitem__(self, idx): item = self.items[idx] # randomly select text from the item if self.mode == 'train' and TEXT_DROPOUT: text = self.text_dropout(item) else: text = item["summary_en"][0] # tokenize text and build mask for text tokens text_inputs = tokenizer(text, return_tensors='pt') text_inputs = text_inputs['input_ids'].squeeze(0) if text_inputs.size(0) > MAX_TEXT_LENGTH: text_inputs = self.random_truncate(text_inputs, MAX_TEXT_LENGTH) text_masks = torch.ones(text_inputs.size(0)) # load music file if self.mode == 'train': filepath = random.choice(item["filepaths"]) else: if item["filepaths"][0].endswith(".abc"): filepath = item["filepaths"][0] else: filepath = item["filepaths"][1] filepath = self.datapath + '/' + filepath with open(filepath, "r", encoding="utf-8") as f: item = f.read().replace("L:1/8\n", "") if filepath.endswith(".abc") else f.read() # randomly remove instrument info from the music file if random.random() < 0.9 and self.mode == 'train': item = remove_instrument_info(item) # mask music inputs music_inputs = patchilizer.encode(item, add_special_patches=True, truncate=True, random_truncate=(self.mode=="train")) music_inputs = torch.tensor(music_inputs) music_masks = torch.ones(music_inputs.size(0)) # pad text inputs and masks pad_indices = torch.ones(MAX_TEXT_LENGTH - text_inputs.size(0)).long() * tokenizer.pad_token_id text_inputs = torch.cat((text_inputs, pad_indices), 0) text_masks = torch.cat((text_masks, torch.zeros(MAX_TEXT_LENGTH - text_masks.size(0))), 0) # pad music inputs and masks pad_indices = torch.ones((PATCH_LENGTH - music_inputs.size(0), PATCH_SIZE)).long() * patchilizer.pad_token_id music_inputs = torch.cat((music_inputs, pad_indices), 0) music_masks = torch.cat((music_masks, torch.zeros(PATCH_LENGTH - music_masks.size(0))), 0) return text_inputs, text_masks, music_inputs, music_masks # call model with a batch of input def process_one_batch(batch): text_inputs, text_masks, music_inputs, music_masks = batch loss = model(text_inputs, text_masks, music_inputs, music_masks) # Reduce the loss on GPU 0 if world_size > 1: loss = loss.unsqueeze(0) dist.reduce(loss, dst=0) loss = loss / world_size dist.broadcast(loss, src=0) return loss.mean() # do one epoch for training def train_epoch(epoch): tqdm_train_set = tqdm(train_set) total_train_loss = 0 iter_idx = 1 model.train() train_steps = (epoch-1)*len(train_set) for batch in tqdm_train_set: with autocast(device_type='cuda'): loss = process_one_batch(batch) scaler.scale(loss).backward() total_train_loss += loss.item() scaler.step(optimizer) scaler.update() lr_scheduler.step() model.zero_grad(set_to_none=True) tqdm_train_set.set_postfix({str(global_rank)+'_train_loss': total_train_loss / iter_idx}) train_steps += 1 # Log the training loss to wandb if global_rank==0 and CLAMP2_WANDB_LOG: wandb.log({"train_loss": total_train_loss / iter_idx}, step=train_steps) iter_idx += 1 return total_train_loss / (iter_idx-1) # do one epoch for eval def eval_epoch(): tqdm_eval_set = tqdm(eval_set) total_eval_loss = 0 iter_idx = 1 model.eval() # Evaluate data for one epoch for batch in tqdm_eval_set: with torch.no_grad(): loss = process_one_batch(batch) total_eval_loss += loss.item() tqdm_eval_set.set_postfix({str(global_rank)+'_eval_loss': total_eval_loss / iter_idx}) iter_idx += 1 return total_eval_loss / (iter_idx-1) # train and eval if __name__ == "__main__": # Set up distributed training world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1 global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else 0 local_rank = int(os.environ['LOCAL_RANK']) if 'LOCAL_RANK' in os.environ else 0 if world_size > 1: torch.cuda.set_device(local_rank) device = torch.device("cuda", local_rank) dist.init_process_group(backend='nccl') else: device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") if CLAMP2_DETERMINISTIC: seed = 42 + global_rank random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False m3_config = BertConfig(vocab_size=1, hidden_size=M3_HIDDEN_SIZE, num_hidden_layers=PATCH_NUM_LAYERS, num_attention_heads=M3_HIDDEN_SIZE//64, intermediate_size=M3_HIDDEN_SIZE*4, max_position_embeddings=PATCH_LENGTH) model = CLaMP2Model(m3_config, global_rank, world_size, TEXT_MODEL_NAME, CLAMP2_HIDDEN_SIZE, CLAMP2_LOAD_M3) model = model.to(device) tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME) patchilizer = M3Patchilizer() # print parameter number print("Parameter Number: "+str(sum(p.numel() for p in model.parameters() if p.requires_grad))) if world_size > 1: model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True) scaler = GradScaler() optimizer = torch.optim.AdamW(model.parameters(), lr=CLAMP2_LEARNING_RATE) if CLAMP2_WANDB_LOG and global_rank==0: # Initialize wandb if WANDB_KEY: wandb.login(key=WANDB_KEY) wandb.init(project="clamp2", name=CLAMP2_WEIGHTS_PATH.replace("weights_", "").replace(".pth", "")) # load filenames under train and eval folder train_files = list_files_in_json(TRAIN_JSONL) eval_files = list_files_in_json(EVAL_JSONL) if len(eval_files)==0: train_files, eval_files = split_data(train_files) train_batch_nums = int(len(train_files) / CLAMP2_BATCH_SIZE) eval_batch_nums = int(len(eval_files) / CLAMP2_BATCH_SIZE) train_files = train_files[:train_batch_nums*CLAMP2_BATCH_SIZE] eval_files = eval_files[:eval_batch_nums*CLAMP2_BATCH_SIZE] train_set = TextMusicDataset(train_files, 'train') eval_set = TextMusicDataset(eval_files, 'eval') train_sampler = DistributedSampler(train_set, num_replicas=world_size, rank=global_rank) eval_sampler = DistributedSampler(eval_set, num_replicas=world_size, rank=global_rank) train_set = DataLoader(train_set, batch_size=CLAMP2_BATCH_SIZE, collate_fn=collate_batch, sampler=train_sampler, shuffle = (train_sampler is None)) eval_set = DataLoader(eval_set, batch_size=CLAMP2_BATCH_SIZE, collate_fn=collate_batch, sampler=eval_sampler, shuffle = (train_sampler is None)) lr_scheduler = get_constant_schedule_with_warmup(optimizer = optimizer, num_warmup_steps = 1000) if CLAMP2_LOAD_CKPT and os.path.exists(CLAMP2_WEIGHTS_PATH): # Load checkpoint to CPU checkpoint = torch.load(CLAMP2_WEIGHTS_PATH, map_location='cpu', weights_only=True) # Here, model is assumed to be on GPU # Load state dict to CPU model first, then move the model to GPU if torch.cuda.device_count() > 1: # If you have a DataParallel model, you need to load to model.module instead cpu_model = deepcopy(model.module) cpu_model.load_state_dict(checkpoint['model']) model.module.load_state_dict(cpu_model.state_dict()) else: # Load to a CPU clone of the model, then load back cpu_model = deepcopy(model) cpu_model.load_state_dict(checkpoint['model']) model.load_state_dict(cpu_model.state_dict()) optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_sched']) pre_epoch = checkpoint['epoch'] best_epoch = checkpoint['best_epoch'] min_eval_loss = checkpoint['min_eval_loss'] print(f"Successfully Loaded Checkpoint from Epoch {checkpoint['epoch']} with loss {checkpoint['min_eval_loss']}") checkpoint = None else: pre_epoch = 0 best_epoch = 0 min_eval_loss = float('inf') model = model.to(device) optimizer = torch.optim.AdamW(model.parameters(), lr=CLAMP2_LEARNING_RATE) for epoch in range(1+pre_epoch, CLAMP2_NUM_EPOCH+1): train_sampler.set_epoch(epoch) eval_sampler.set_epoch(epoch) print('-' * 21 + "Epoch " + str(epoch) + '-' * 21) train_loss = train_epoch(epoch) eval_loss = eval_epoch() if global_rank==0: with open(CLAMP2_LOGS_PATH,'a') as f: f.write("Epoch " + str(epoch) + "\ntrain_loss: " + str(train_loss) + "\neval_loss: " +str(eval_loss) + "\ntime: " + time.asctime(time.localtime(time.time())) + "\n\n") if eval_loss < min_eval_loss: best_epoch = epoch min_eval_loss = eval_loss checkpoint = { 'model': model.module.state_dict() if hasattr(model, "module") else model.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_sched': lr_scheduler.state_dict(), 'epoch': epoch, 'best_epoch': best_epoch, 'min_eval_loss': min_eval_loss } torch.save(checkpoint, CLAMP2_WEIGHTS_PATH) checkpoint = { 'model': model.module.state_dict() if hasattr(model, "module") else model.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_sched': lr_scheduler.state_dict(), 'epoch': epoch, 'best_epoch': best_epoch, 'min_eval_loss': min_eval_loss } torch.save(checkpoint, "latest_"+CLAMP2_WEIGHTS_PATH) if world_size > 1: dist.barrier() if global_rank==0: print("Best Eval Epoch : "+str(best_epoch)) print("Min Eval Loss : "+str(min_eval_loss))