--- license: apache-2.0 datasets: - uonlp/CulturaX language: - ko --- # sangmin6600/mamba2-400m-ko 한국어 데이터로 처음부터 학습한 Mamba2기반 소형 언어모델 및 BPE토크나이저 사전학습만 된 모델이며 **사용시 튜닝이 필요합니다.** (it 모델 학습 예정) ## Uses ### Install Dependencies python, cuda, torch 버전에 맞는 causal-conv1d, mamba_ssm 설치 주석처리한 부분의 경우 python 3.10, cuda 11.8 torch 2.5 의 예시입니다. ```py pip install -U triton pip install causal-conv1d #pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu11torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl pip install mamba_ssm #pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu11torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl ``` ### Direct Use ```py from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "sangmin6600/mamba2-400m-ko" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to("cuda") text = """언어모델은""" input_ids = tokenizer(text, return_tensors="pt")['input_ids'].to("cuda") output_ids = model.generate(input_ids, max_new_tokens=100, do_sample=True) print(tokenizer.decode(output_ids[0], skip_special_tokens=True)) ``` ### Downstream Use [optional] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]