--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - medical_speech_transcription metrics: - wer model-index: - name: whisper_fine_tune_Nataraj results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical Speech, Transcription, and Intent type: medical_speech_transcription args: 'config: en, split: test' metrics: - name: Wer type: wer value: 12.673707615341856 --- # whisper_fine_tune_Nataraj This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Medical Speech, Transcription, and Intent dataset. It achieves the following results on the evaluation set: - Loss: 0.1956 - Wer: 12.6737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.5559 | 0.2825 | 100 | 0.5252 | 15.9811 | | 0.1575 | 0.5650 | 200 | 0.2096 | 11.5990 | | 0.1228 | 0.8475 | 300 | 0.2005 | 11.1729 | | 0.0528 | 1.1299 | 400 | 0.1967 | 11.6732 | | 0.0402 | 1.4124 | 500 | 0.1960 | 12.3680 | | 0.0583 | 1.6949 | 600 | 0.1956 | 12.6737 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1