saraestevez commited on
Commit
bad9d05
1 Parent(s): 4fa3e8a

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Para saber si un negocio va a funcionar, es necesario realizar un estudio
14
+ de mercado, valorar la economía local durante un año, considerar la afluencia
15
+ de personas y la ubicación, así como determinar el tamaño de la inversión.
16
+ - text: Apoyo la opinión de Tyrexito y también reclamo al Banco Sabadell por sus comisiones.
17
+ - text: Los resultados del Banco Sabadell impulsan al IBEX 35.
18
+ - text: Aunque no pude retirar el bono de festividad en el cajero, ING y AKBANK rechazaron
19
+ mis quejas, pero tras anunciar una denuncia, me transfirieron el dinero en una
20
+ hora; si tienes razón, no te rindas.
21
+ - text: El Gobierno presentará al nuevo gobernador del Banco de España en una Comisión
22
+ del Congreso este jueves.
23
+ inference: true
24
+ model-index:
25
+ - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.7739130434782608
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
54
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
55
+ - **Maximum Sequence Length:** 128 tokens
56
+ - **Number of Classes:** 2 classes
57
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ### Model Labels
68
+ | Label | Examples |
69
+ |:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
70
+ | relevant | <ul><li>'Nuevo caso de phishing relacionado con Abanca, registrado el 23 de julio de 2024, con la URL: /www.inicio-abanca.com/es/WELE200M_Logon_Ini.aspx.'</li><li>'Una alumna que trabajó en Bancomer reveló un esquema de robo en el que dos cajeros afirmaban que un cliente había depositado mil pesos en un pago de dos mil y se quedaban con la mitad cada uno.'</li><li>'Las previsiones de crecimiento de España para 2024 han mejorado según diversas organizaciones, con estimaciones que oscilan entre el 1,8% y el 2,4%, impulsadas por turismo, exportaciones y trabajadores extranjeros.'</li></ul> |
71
+ | discard | <ul><li>'Banco Santander ofrece una cuenta en línea sin comisiones y un bono de 400€ por domiciliar tu nómina.'</li><li>'El BBVA fue el banco que peor me trató al tener que contratar productos innecesarios para conseguir mi primera hipoteca de funcionario.'</li><li>'CaixaBank se destaca como líder del sector bancario gracias a su sólido crecimiento y eficiencia operativa, convirtiéndose en una opción atractiva para inversores.'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.7739 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-200")
97
+ # Run inference
98
+ preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 1 | 21.3275 | 41 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:---------|:----------------------|
134
+ | discard | 200 |
135
+ | relevant | 200 |
136
+
137
+ ### Training Hyperparameters
138
+ - batch_size: (16, 2)
139
+ - num_epochs: (1, 16)
140
+ - max_steps: -1
141
+ - sampling_strategy: oversampling
142
+ - body_learning_rate: (2e-05, 1e-05)
143
+ - head_learning_rate: 0.01
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:------:|:----:|:-------------:|:---------------:|
157
+ | 0.0002 | 1 | 0.4199 | - |
158
+ | 0.0100 | 50 | 0.3357 | - |
159
+ | 0.0199 | 100 | 0.3198 | - |
160
+ | 0.0299 | 150 | 0.2394 | - |
161
+ | 0.0398 | 200 | 0.2411 | - |
162
+ | 0.0498 | 250 | 0.2277 | - |
163
+ | 0.0597 | 300 | 0.1876 | - |
164
+ | 0.0697 | 350 | 0.1481 | - |
165
+ | 0.0796 | 400 | 0.1533 | - |
166
+ | 0.0896 | 450 | 0.0145 | - |
167
+ | 0.0995 | 500 | 0.0113 | - |
168
+ | 0.1095 | 550 | 0.0045 | - |
169
+ | 0.1194 | 600 | 0.0201 | - |
170
+ | 0.1294 | 650 | 0.0008 | - |
171
+ | 0.1393 | 700 | 0.0003 | - |
172
+ | 0.1493 | 750 | 0.0003 | - |
173
+ | 0.1592 | 800 | 0.0003 | - |
174
+ | 0.1692 | 850 | 0.0001 | - |
175
+ | 0.1791 | 900 | 0.0001 | - |
176
+ | 0.1891 | 950 | 0.0001 | - |
177
+ | 0.1990 | 1000 | 0.0001 | - |
178
+ | 0.2090 | 1050 | 0.0001 | - |
179
+ | 0.2189 | 1100 | 0.0002 | - |
180
+ | 0.2289 | 1150 | 0.0001 | - |
181
+ | 0.2388 | 1200 | 0.0001 | - |
182
+ | 0.2488 | 1250 | 0.0001 | - |
183
+ | 0.2587 | 1300 | 0.0 | - |
184
+ | 0.2687 | 1350 | 0.0001 | - |
185
+ | 0.2786 | 1400 | 0.0001 | - |
186
+ | 0.2886 | 1450 | 0.0001 | - |
187
+ | 0.2985 | 1500 | 0.0 | - |
188
+ | 0.3085 | 1550 | 0.0001 | - |
189
+ | 0.3184 | 1600 | 0.0 | - |
190
+ | 0.3284 | 1650 | 0.0 | - |
191
+ | 0.3383 | 1700 | 0.0 | - |
192
+ | 0.3483 | 1750 | 0.0001 | - |
193
+ | 0.3582 | 1800 | 0.0 | - |
194
+ | 0.3682 | 1850 | 0.0 | - |
195
+ | 0.3781 | 1900 | 0.0 | - |
196
+ | 0.3881 | 1950 | 0.0 | - |
197
+ | 0.3980 | 2000 | 0.0 | - |
198
+ | 0.4080 | 2050 | 0.0 | - |
199
+ | 0.4179 | 2100 | 0.0 | - |
200
+ | 0.4279 | 2150 | 0.0 | - |
201
+ | 0.4378 | 2200 | 0.0 | - |
202
+ | 0.4478 | 2250 | 0.0 | - |
203
+ | 0.4577 | 2300 | 0.0 | - |
204
+ | 0.4677 | 2350 | 0.0 | - |
205
+ | 0.4776 | 2400 | 0.0 | - |
206
+ | 0.4876 | 2450 | 0.0 | - |
207
+ | 0.4975 | 2500 | 0.0 | - |
208
+ | 0.5075 | 2550 | 0.0 | - |
209
+ | 0.5174 | 2600 | 0.0 | - |
210
+ | 0.5274 | 2650 | 0.0 | - |
211
+ | 0.5373 | 2700 | 0.0 | - |
212
+ | 0.5473 | 2750 | 0.0 | - |
213
+ | 0.5572 | 2800 | 0.0 | - |
214
+ | 0.5672 | 2850 | 0.0 | - |
215
+ | 0.5771 | 2900 | 0.0 | - |
216
+ | 0.5871 | 2950 | 0.0 | - |
217
+ | 0.5970 | 3000 | 0.0 | - |
218
+ | 0.6070 | 3050 | 0.0 | - |
219
+ | 0.6169 | 3100 | 0.0 | - |
220
+ | 0.6269 | 3150 | 0.0 | - |
221
+ | 0.6368 | 3200 | 0.0 | - |
222
+ | 0.6468 | 3250 | 0.0 | - |
223
+ | 0.6567 | 3300 | 0.0 | - |
224
+ | 0.6667 | 3350 | 0.0 | - |
225
+ | 0.6766 | 3400 | 0.0 | - |
226
+ | 0.6866 | 3450 | 0.0 | - |
227
+ | 0.6965 | 3500 | 0.0 | - |
228
+ | 0.7065 | 3550 | 0.0 | - |
229
+ | 0.7164 | 3600 | 0.0 | - |
230
+ | 0.7264 | 3650 | 0.0 | - |
231
+ | 0.7363 | 3700 | 0.0 | - |
232
+ | 0.7463 | 3750 | 0.0 | - |
233
+ | 0.7562 | 3800 | 0.0 | - |
234
+ | 0.7662 | 3850 | 0.0 | - |
235
+ | 0.7761 | 3900 | 0.0 | - |
236
+ | 0.7861 | 3950 | 0.0 | - |
237
+ | 0.7960 | 4000 | 0.0 | - |
238
+ | 0.8060 | 4050 | 0.0 | - |
239
+ | 0.8159 | 4100 | 0.0 | - |
240
+ | 0.8259 | 4150 | 0.0 | - |
241
+ | 0.8358 | 4200 | 0.0 | - |
242
+ | 0.8458 | 4250 | 0.0 | - |
243
+ | 0.8557 | 4300 | 0.0 | - |
244
+ | 0.8657 | 4350 | 0.0 | - |
245
+ | 0.8756 | 4400 | 0.0 | - |
246
+ | 0.8856 | 4450 | 0.0 | - |
247
+ | 0.8955 | 4500 | 0.0 | - |
248
+ | 0.9055 | 4550 | 0.0 | - |
249
+ | 0.9154 | 4600 | 0.0 | - |
250
+ | 0.9254 | 4650 | 0.0 | - |
251
+ | 0.9353 | 4700 | 0.0 | - |
252
+ | 0.9453 | 4750 | 0.0 | - |
253
+ | 0.9552 | 4800 | 0.0 | - |
254
+ | 0.9652 | 4850 | 0.0 | - |
255
+ | 0.9751 | 4900 | 0.0 | - |
256
+ | 0.9851 | 4950 | 0.0 | - |
257
+ | 0.9950 | 5000 | 0.0 | - |
258
+
259
+ ### Framework Versions
260
+ - Python: 3.11.0rc1
261
+ - SetFit: 1.0.3
262
+ - Sentence Transformers: 2.7.0
263
+ - Transformers: 4.39.0
264
+ - PyTorch: 2.3.1+cu121
265
+ - Datasets: 2.19.1
266
+ - Tokenizers: 0.15.2
267
+
268
+ ## Citation
269
+
270
+ ### BibTeX
271
+ ```bibtex
272
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
273
+ doi = {10.48550/ARXIV.2209.11055},
274
+ url = {https://arxiv.org/abs/2209.11055},
275
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
276
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
277
+ title = {Efficient Few-Shot Learning Without Prompts},
278
+ publisher = {arXiv},
279
+ year = {2022},
280
+ copyright = {Creative Commons Attribution 4.0 International}
281
+ }
282
+ ```
283
+
284
+ <!--
285
+ ## Glossary
286
+
287
+ *Clearly define terms in order to be accessible across audiences.*
288
+ -->
289
+
290
+ <!--
291
+ ## Model Card Authors
292
+
293
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
294
+ -->
295
+
296
+ <!--
297
+ ## Model Card Contact
298
+
299
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
300
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "discard",
4
+ "relevant"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6146fba3cc053b63cc4dcacab41cf04dcb51f7e3a46f7a63717287742c38aeea
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71f7e744826ff7d642ef2b204f33c196caeacd5bfd3348dad55bf969f3cfdb2f
3
+ size 3967
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260