--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Para saber si un negocio va a funcionar, es necesario realizar un estudio de mercado, valorar la economía local durante un año, considerar la afluencia de personas y la ubicación, así como determinar el tamaño de la inversión. - text: Apoyo la opinión de Tyrexito y también reclamo al Banco Sabadell por sus comisiones. - text: Los resultados del Banco Sabadell impulsan al IBEX 35. - text: Aunque no pude retirar el bono de festividad en el cajero, ING y AKBANK rechazaron mis quejas, pero tras anunciar una denuncia, me transfirieron el dinero en una hora; si tienes razón, no te rindas. - text: El Gobierno presentará al nuevo gobernador del Banco de España en una Comisión del Congreso este jueves. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7739130434782608 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | relevant | | | discard | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7739 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-200") # Run inference preds = model("Los resultados del Banco Sabadell impulsan al IBEX 35.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 21.3275 | 41 | | Label | Training Sample Count | |:---------|:----------------------| | discard | 200 | | relevant | 200 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0002 | 1 | 0.4199 | - | | 0.0100 | 50 | 0.3357 | - | | 0.0199 | 100 | 0.3198 | - | | 0.0299 | 150 | 0.2394 | - | | 0.0398 | 200 | 0.2411 | - | | 0.0498 | 250 | 0.2277 | - | | 0.0597 | 300 | 0.1876 | - | | 0.0697 | 350 | 0.1481 | - | | 0.0796 | 400 | 0.1533 | - | | 0.0896 | 450 | 0.0145 | - | | 0.0995 | 500 | 0.0113 | - | | 0.1095 | 550 | 0.0045 | - | | 0.1194 | 600 | 0.0201 | - | | 0.1294 | 650 | 0.0008 | - | | 0.1393 | 700 | 0.0003 | - | | 0.1493 | 750 | 0.0003 | - | | 0.1592 | 800 | 0.0003 | - | | 0.1692 | 850 | 0.0001 | - | | 0.1791 | 900 | 0.0001 | - | | 0.1891 | 950 | 0.0001 | - | | 0.1990 | 1000 | 0.0001 | - | | 0.2090 | 1050 | 0.0001 | - | | 0.2189 | 1100 | 0.0002 | - | | 0.2289 | 1150 | 0.0001 | - | | 0.2388 | 1200 | 0.0001 | - | | 0.2488 | 1250 | 0.0001 | - | | 0.2587 | 1300 | 0.0 | - | | 0.2687 | 1350 | 0.0001 | - | | 0.2786 | 1400 | 0.0001 | - | | 0.2886 | 1450 | 0.0001 | - | | 0.2985 | 1500 | 0.0 | - | | 0.3085 | 1550 | 0.0001 | - | | 0.3184 | 1600 | 0.0 | - | | 0.3284 | 1650 | 0.0 | - | | 0.3383 | 1700 | 0.0 | - | | 0.3483 | 1750 | 0.0001 | - | | 0.3582 | 1800 | 0.0 | - | | 0.3682 | 1850 | 0.0 | - | | 0.3781 | 1900 | 0.0 | - | | 0.3881 | 1950 | 0.0 | - | | 0.3980 | 2000 | 0.0 | - | | 0.4080 | 2050 | 0.0 | - | | 0.4179 | 2100 | 0.0 | - | | 0.4279 | 2150 | 0.0 | - | | 0.4378 | 2200 | 0.0 | - | | 0.4478 | 2250 | 0.0 | - | | 0.4577 | 2300 | 0.0 | - | | 0.4677 | 2350 | 0.0 | - | | 0.4776 | 2400 | 0.0 | - | | 0.4876 | 2450 | 0.0 | - | | 0.4975 | 2500 | 0.0 | - | | 0.5075 | 2550 | 0.0 | - | | 0.5174 | 2600 | 0.0 | - | | 0.5274 | 2650 | 0.0 | - | | 0.5373 | 2700 | 0.0 | - | | 0.5473 | 2750 | 0.0 | - | | 0.5572 | 2800 | 0.0 | - | | 0.5672 | 2850 | 0.0 | - | | 0.5771 | 2900 | 0.0 | - | | 0.5871 | 2950 | 0.0 | - | | 0.5970 | 3000 | 0.0 | - | | 0.6070 | 3050 | 0.0 | - | | 0.6169 | 3100 | 0.0 | - | | 0.6269 | 3150 | 0.0 | - | | 0.6368 | 3200 | 0.0 | - | | 0.6468 | 3250 | 0.0 | - | | 0.6567 | 3300 | 0.0 | - | | 0.6667 | 3350 | 0.0 | - | | 0.6766 | 3400 | 0.0 | - | | 0.6866 | 3450 | 0.0 | - | | 0.6965 | 3500 | 0.0 | - | | 0.7065 | 3550 | 0.0 | - | | 0.7164 | 3600 | 0.0 | - | | 0.7264 | 3650 | 0.0 | - | | 0.7363 | 3700 | 0.0 | - | | 0.7463 | 3750 | 0.0 | - | | 0.7562 | 3800 | 0.0 | - | | 0.7662 | 3850 | 0.0 | - | | 0.7761 | 3900 | 0.0 | - | | 0.7861 | 3950 | 0.0 | - | | 0.7960 | 4000 | 0.0 | - | | 0.8060 | 4050 | 0.0 | - | | 0.8159 | 4100 | 0.0 | - | | 0.8259 | 4150 | 0.0 | - | | 0.8358 | 4200 | 0.0 | - | | 0.8458 | 4250 | 0.0 | - | | 0.8557 | 4300 | 0.0 | - | | 0.8657 | 4350 | 0.0 | - | | 0.8756 | 4400 | 0.0 | - | | 0.8856 | 4450 | 0.0 | - | | 0.8955 | 4500 | 0.0 | - | | 0.9055 | 4550 | 0.0 | - | | 0.9154 | 4600 | 0.0 | - | | 0.9254 | 4650 | 0.0 | - | | 0.9353 | 4700 | 0.0 | - | | 0.9453 | 4750 | 0.0 | - | | 0.9552 | 4800 | 0.0 | - | | 0.9652 | 4850 | 0.0 | - | | 0.9751 | 4900 | 0.0 | - | | 0.9851 | 4950 | 0.0 | - | | 0.9950 | 5000 | 0.0 | - | ### Framework Versions - Python: 3.11.0rc1 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.19.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```