saraestevez commited on
Commit
3c8e12a
1 Parent(s): 8f69bad

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana.
14
+ - text: Tengo un problema con un cajero automático que no me dio el dinero pero sí
15
+ lo cargó.
16
+ - text: El chip de mi tarjeta de Banorte no funciona, hice una transferencia a mi
17
+ tarjeta de BBVA y el cajero se quedó con ella, ¿cómo va su sábado?
18
+ - text: Evo Banco reporta un asombroso incremento del 700% en sus depósitos en un
19
+ año y ahora ofrece la posibilidad de contratar servicios a través de WhatsApp.
20
+ - text: Los nuevos jubilados que acrediten su pensión en BBVA recibirán un regalo
21
+ de bienvenida de $130.000.
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.8028571428571428
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 128 tokens
55
+ - **Number of Classes:** 2 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | discard | <ul><li>'Marcos informa que se puede realizar el pago de productos de BBVA a través de la Línea BBVA, cajeros automáticos, practicajas, ventanilla de sucursal o diversos comercios.'</li><li>'Se ha celebrado una reunión de alto nivel en 2024 para concretar proyectos de inversión, incluyendo la cooperación con BBVA para la construcción de un portadrones y en el ámbito turístico.'</li><li>'Diversificar es clave para alcanzar nuestros objetivos en inversiones y en la vida, descubre cómo tus decisiones financieras pueden impactar tu vida personal en este artículo.'</li></ul> |
70
+ | relevant | <ul><li>'La persona recibió un correo idéntico al que le explicaron que es una técnica de estafa que simula enviarlo desde su propia cuenta.'</li><li>'La cancelación de la cuenta se ha demorado un mes y al solicitar 200 euros para un viaje, me han cobrado 9 euros de comisión.'</li><li>'El Santander logró récords en beneficios y comisiones a los desfavorecidos bajo el ministerio del consagrado en Consumo, mientras se obsesionan con la apariencia y carecen de dignidad y principios.'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.8029 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-400")
96
+ # Run inference
97
+ preds = model("La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana.")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:--------|:----|
129
+ | Word count | 1 | 21.6612 | 44 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:---------|:----------------------|
133
+ | discard | 400 |
134
+ | relevant | 400 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (16, 16)
138
+ - num_epochs: (1, 1)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 20
142
+ - body_learning_rate: (2e-05, 2e-05)
143
+ - head_learning_rate: 2e-05
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:------:|:----:|:-------------:|:---------------:|
157
+ | 0.0005 | 1 | 0.3197 | - |
158
+ | 0.025 | 50 | 0.2199 | - |
159
+ | 0.05 | 100 | 0.2876 | - |
160
+ | 0.075 | 150 | 0.2568 | - |
161
+ | 0.1 | 200 | 0.196 | - |
162
+ | 0.125 | 250 | 0.15 | - |
163
+ | 0.15 | 300 | 0.1475 | - |
164
+ | 0.175 | 350 | 0.081 | - |
165
+ | 0.2 | 400 | 0.0441 | - |
166
+ | 0.225 | 450 | 0.0228 | - |
167
+ | 0.25 | 500 | 0.0017 | - |
168
+ | 0.275 | 550 | 0.0083 | - |
169
+ | 0.3 | 600 | 0.002 | - |
170
+ | 0.325 | 650 | 0.0013 | - |
171
+ | 0.35 | 700 | 0.0011 | - |
172
+ | 0.375 | 750 | 0.0014 | - |
173
+ | 0.4 | 800 | 0.0004 | - |
174
+ | 0.425 | 850 | 0.0001 | - |
175
+ | 0.45 | 900 | 0.0118 | - |
176
+ | 0.475 | 950 | 0.0002 | - |
177
+ | 0.5 | 1000 | 0.0012 | - |
178
+ | 0.525 | 1050 | 0.0003 | - |
179
+ | 0.55 | 1100 | 0.0001 | - |
180
+ | 0.575 | 1150 | 0.0003 | - |
181
+ | 0.6 | 1200 | 0.0001 | - |
182
+ | 0.625 | 1250 | 0.0001 | - |
183
+ | 0.65 | 1300 | 0.0001 | - |
184
+ | 0.675 | 1350 | 0.0002 | - |
185
+ | 0.7 | 1400 | 0.0197 | - |
186
+ | 0.725 | 1450 | 0.0002 | - |
187
+ | 0.75 | 1500 | 0.0002 | - |
188
+ | 0.775 | 1550 | 0.0001 | - |
189
+ | 0.8 | 1600 | 0.0004 | - |
190
+ | 0.825 | 1650 | 0.0001 | - |
191
+ | 0.85 | 1700 | 0.0001 | - |
192
+ | 0.875 | 1750 | 0.0001 | - |
193
+ | 0.9 | 1800 | 0.0001 | - |
194
+ | 0.925 | 1850 | 0.0001 | - |
195
+ | 0.95 | 1900 | 0.0158 | - |
196
+ | 0.975 | 1950 | 0.0001 | - |
197
+ | 1.0 | 2000 | 0.0001 | - |
198
+
199
+ ### Framework Versions
200
+ - Python: 3.11.0rc1
201
+ - SetFit: 1.0.3
202
+ - Sentence Transformers: 2.7.0
203
+ - Transformers: 4.39.0
204
+ - PyTorch: 2.3.1+cu121
205
+ - Datasets: 2.19.1
206
+ - Tokenizers: 0.15.2
207
+
208
+ ## Citation
209
+
210
+ ### BibTeX
211
+ ```bibtex
212
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
213
+ doi = {10.48550/ARXIV.2209.11055},
214
+ url = {https://arxiv.org/abs/2209.11055},
215
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
216
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
217
+ title = {Efficient Few-Shot Learning Without Prompts},
218
+ publisher = {arXiv},
219
+ year = {2022},
220
+ copyright = {Creative Commons Attribution 4.0 International}
221
+ }
222
+ ```
223
+
224
+ <!--
225
+ ## Glossary
226
+
227
+ *Clearly define terms in order to be accessible across audiences.*
228
+ -->
229
+
230
+ <!--
231
+ ## Model Card Authors
232
+
233
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
234
+ -->
235
+
236
+ <!--
237
+ ## Model Card Contact
238
+
239
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
240
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "discard",
4
+ "relevant"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:626529364b9f55e4a22aff9730840a5436fa7a14b358f24787ac44b8a27821e0
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b8c5d969a7656569cd7925c5717d755b14bea098950ea8e623443718923f446
3
+ size 3967
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260