--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana. - text: Tengo un problema con un cajero automático que no me dio el dinero pero sí lo cargó. - text: El chip de mi tarjeta de Banorte no funciona, hice una transferencia a mi tarjeta de BBVA y el cajero se quedó con ella, ¿cómo va su sábado? - text: Evo Banco reporta un asombroso incremento del 700% en sus depósitos en un año y ahora ofrece la posibilidad de contratar servicios a través de WhatsApp. - text: Los nuevos jubilados que acrediten su pensión en BBVA recibirán un regalo de bienvenida de $130.000. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8028571428571428 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | discard | | | relevant | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8029 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-400") # Run inference preds = model("La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 21.6612 | 44 | | Label | Training Sample Count | |:---------|:----------------------| | discard | 400 | | relevant | 400 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0005 | 1 | 0.3197 | - | | 0.025 | 50 | 0.2199 | - | | 0.05 | 100 | 0.2876 | - | | 0.075 | 150 | 0.2568 | - | | 0.1 | 200 | 0.196 | - | | 0.125 | 250 | 0.15 | - | | 0.15 | 300 | 0.1475 | - | | 0.175 | 350 | 0.081 | - | | 0.2 | 400 | 0.0441 | - | | 0.225 | 450 | 0.0228 | - | | 0.25 | 500 | 0.0017 | - | | 0.275 | 550 | 0.0083 | - | | 0.3 | 600 | 0.002 | - | | 0.325 | 650 | 0.0013 | - | | 0.35 | 700 | 0.0011 | - | | 0.375 | 750 | 0.0014 | - | | 0.4 | 800 | 0.0004 | - | | 0.425 | 850 | 0.0001 | - | | 0.45 | 900 | 0.0118 | - | | 0.475 | 950 | 0.0002 | - | | 0.5 | 1000 | 0.0012 | - | | 0.525 | 1050 | 0.0003 | - | | 0.55 | 1100 | 0.0001 | - | | 0.575 | 1150 | 0.0003 | - | | 0.6 | 1200 | 0.0001 | - | | 0.625 | 1250 | 0.0001 | - | | 0.65 | 1300 | 0.0001 | - | | 0.675 | 1350 | 0.0002 | - | | 0.7 | 1400 | 0.0197 | - | | 0.725 | 1450 | 0.0002 | - | | 0.75 | 1500 | 0.0002 | - | | 0.775 | 1550 | 0.0001 | - | | 0.8 | 1600 | 0.0004 | - | | 0.825 | 1650 | 0.0001 | - | | 0.85 | 1700 | 0.0001 | - | | 0.875 | 1750 | 0.0001 | - | | 0.9 | 1800 | 0.0001 | - | | 0.925 | 1850 | 0.0001 | - | | 0.95 | 1900 | 0.0158 | - | | 0.975 | 1950 | 0.0001 | - | | 1.0 | 2000 | 0.0001 | - | ### Framework Versions - Python: 3.11.0rc1 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.19.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```