---
base_model: FacebookAI/xlm-roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Banco Sabadell confirma el día de pago de pensiones para jubilados en agosto.
- text: Banco Santander supera resistencias y avanza hacia máximos anuales, lo que
tiene implicaciones para los inversores.
- text: Abre una cuenta online gratuita en BBVA, domicilia tu nómina durante 12 meses
y recibe 250€ usando el código 90030031951793.
- text: MyInvestor tiene una grave falta de oferta en acciones individuales y sus
comisiones son peores que las de ING en ese mismo ámbito.
- text: Los recicladores están durmiendo en la vereda del BBVA y el fin de semana
dentro del cajero, mientras la seguridad parece ausente.
inference: true
model-index:
- name: SetFit with FacebookAI/xlm-roberta-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7138461538461538
name: Accuracy
---
# SetFit with FacebookAI/xlm-roberta-base
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| discard |
- 'Las negociaciones para el Banco de España avanzan rápidamente y el Congreso convocará el jueves la comisión de economía para anunciar los nombres pactados, con Conthe como la candidata más firme a gobernadora.'
- 'Depósitos y seguros son aspectos fundamentales para atraer clientes y potenciar el negocio de Caixabank en la segunda mitad del año.'
- 'El Banco Santander ofrece 400€ al cambiar tu nómina a su cuenta en línea, eliminando las comisiones bancarias.'
|
| relevant | - 'Nuevo caso de phishing relacionado con Evobanco registrado el 13 de julio de 2024.'
- 'El Banco Sabadell ofrece depósitos a plazo fijo con un interés del 2,5% TAE a 1 año y 3% TAE a 6 meses, lo cual es una buena opción.'
- 'Estoy en Abanca porque no me cobran comisiones, de lo contrario ya los habría dejado.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7138 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("saraestevez/setfit-xlm-bank-tweets-processed-80")
# Run inference
preds = model("Banco Sabadell confirma el día de pago de pensiones para jubilados en agosto.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 21.0437 | 36 |
| Label | Training Sample Count |
|:---------|:----------------------|
| discard | 80 |
| relevant | 80 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0025 | 1 | 0.4924 | - |
| 0.125 | 50 | 0.2519 | - |
| 0.25 | 100 | 0.186 | - |
| 0.375 | 150 | 0.188 | - |
| 0.5 | 200 | 0.0504 | - |
| 0.625 | 250 | 0.0412 | - |
| 0.75 | 300 | 0.0147 | - |
| 0.875 | 350 | 0.0517 | - |
| 1.0 | 400 | 0.0162 | - |
### Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```