saraleivam commited on
Commit
43ddc56
·
verified ·
1 Parent(s): b2371e8

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:453
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Introduction to blockchain technology.
16
+ sentences:
17
+ - Desarrollador de software con experiencia en APIs RESTful
18
+ - Graphic designer with Adobe Illustrator skills.
19
+ - Blockchain developer with smart contract experience.
20
+ - source_sentence: Advanced English for international business.
21
+ sentences:
22
+ - Sales executive fluent in English with international sales experience.
23
+ - Desarrollador de aplicaciones móviles con experiencia en Kotlin
24
+ - Nurse with pediatric care skills.
25
+ - source_sentence: Speech recognition technology fundamentals.
26
+ sentences:
27
+ - Front-end developer with advanced CSS and responsive web design skills.
28
+ - Speech recognition engineer with ASR system development skills.
29
+ - Doctor with radiology experience.
30
+ - source_sentence: Desarrollo de videojuegos con Godot
31
+ sentences:
32
+ - UX designer with web application design skills.
33
+ - Desarrollador de videojuegos con experiencia en Godot
34
+ - Profesor de arte con experiencia en escultura
35
+ - source_sentence: Data Analysis, Database Application, Statistical Analysis
36
+ sentences:
37
+ - Escritora, años de experiencia
38
+ - Machine learning engineer with neural network skills.
39
+ - ' Ingeniero en sistemas con experiencia en redes informáticas.'
40
+ ---
41
+
42
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the dataset dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
51
+ - **Maximum Sequence Length:** 128 tokens
52
+ - **Output Dimensionality:** 384 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ - **Training Dataset:**
55
+ - dataset
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("saraleivam/GURU-trained-model")
90
+ # Run inference
91
+ sentences = [
92
+ 'Data Analysis, Database Application, Statistical Analysis',
93
+ ' Ingeniero en sistemas con experiencia en redes informáticas.',
94
+ 'Escritora, años de experiencia',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 384]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### dataset
147
+
148
+ * Dataset: dataset
149
+ * Size: 453 training samples
150
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | anchor | positive | negative |
153
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string | string |
155
+ | details | <ul><li>min: 6 tokens</li><li>mean: 11.26 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.48 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.33 tokens</li><li>max: 16 tokens</li></ul> |
156
+ * Samples:
157
+ | anchor | positive | negative |
158
+ |:-------------------------------------------------------|:---------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
159
+ | <code>Fundamentos de ingeniería de software</code> | <code>Ingeniero de software con experiencia en principios de diseño de software</code> | <code>Enfermera con experiencia en atención geriátrica</code> |
160
+ | <code>Data science for healthcare applications.</code> | <code>Data scientist with healthcare data analysis skills.</code> | <code>Lawyer with criminal law experience.</code> |
161
+ | <code>Programación orientada a objetos en Java.</code> | <code>Ingeniero de software con experiencia en desarrollo backend con Java.</code> | <code>Farmacéutico con habilidades en atención farmacéutica.</code> |
162
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
163
+ ```json
164
+ {
165
+ "scale": 20.0,
166
+ "similarity_fct": "cos_sim"
167
+ }
168
+ ```
169
+
170
+ ### Evaluation Dataset
171
+
172
+ #### dataset
173
+
174
+ * Dataset: dataset
175
+ * Size: 114 evaluation samples
176
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
177
+ * Approximate statistics based on the first 1000 samples:
178
+ | | anchor | positive | negative |
179
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
180
+ | type | string | string | string |
181
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.23 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.31 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.49 tokens</li><li>max: 16 tokens</li></ul> |
182
+ * Samples:
183
+ | anchor | positive | negative |
184
+ |:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------|
185
+ | <code>Microservices architecture and design.</code> | <code>Software architect with microservices design and implementation skills.</code> | <code>Literature professor with literary criticism experience.</code> |
186
+ | <code>Developing VR applications with Unity.</code> | <code>VR developer with Unity skills.</code> | <code>Pharmacist with pharmaceutical care skills.</code> |
187
+ | <code>Curso de desarrollo personal y habilidades de comunicación efectiva.</code> | <code> Coach de vida con experiencia en desarrollo personal y habilidades de comunicación.</code> | <code> Ingeniero ambiental con habilidades en gestión de residuos.</code> |
188
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
189
+ ```json
190
+ {
191
+ "scale": 20.0,
192
+ "similarity_fct": "cos_sim"
193
+ }
194
+ ```
195
+
196
+ ### Training Hyperparameters
197
+
198
+ #### All Hyperparameters
199
+ <details><summary>Click to expand</summary>
200
+
201
+ - `overwrite_output_dir`: False
202
+ - `do_predict`: False
203
+ - `eval_strategy`: no
204
+ - `prediction_loss_only`: True
205
+ - `per_device_train_batch_size`: 8
206
+ - `per_device_eval_batch_size`: 8
207
+ - `per_gpu_train_batch_size`: None
208
+ - `per_gpu_eval_batch_size`: None
209
+ - `gradient_accumulation_steps`: 1
210
+ - `eval_accumulation_steps`: None
211
+ - `learning_rate`: 5e-05
212
+ - `weight_decay`: 0.0
213
+ - `adam_beta1`: 0.9
214
+ - `adam_beta2`: 0.999
215
+ - `adam_epsilon`: 1e-08
216
+ - `max_grad_norm`: 1.0
217
+ - `num_train_epochs`: 3.0
218
+ - `max_steps`: -1
219
+ - `lr_scheduler_type`: linear
220
+ - `lr_scheduler_kwargs`: {}
221
+ - `warmup_ratio`: 0.0
222
+ - `warmup_steps`: 0
223
+ - `log_level`: passive
224
+ - `log_level_replica`: warning
225
+ - `log_on_each_node`: True
226
+ - `logging_nan_inf_filter`: True
227
+ - `save_safetensors`: True
228
+ - `save_on_each_node`: False
229
+ - `save_only_model`: False
230
+ - `restore_callback_states_from_checkpoint`: False
231
+ - `no_cuda`: False
232
+ - `use_cpu`: False
233
+ - `use_mps_device`: False
234
+ - `seed`: 42
235
+ - `data_seed`: None
236
+ - `jit_mode_eval`: False
237
+ - `use_ipex`: False
238
+ - `bf16`: False
239
+ - `fp16`: False
240
+ - `fp16_opt_level`: O1
241
+ - `half_precision_backend`: auto
242
+ - `bf16_full_eval`: False
243
+ - `fp16_full_eval`: False
244
+ - `tf32`: None
245
+ - `local_rank`: 0
246
+ - `ddp_backend`: None
247
+ - `tpu_num_cores`: None
248
+ - `tpu_metrics_debug`: False
249
+ - `debug`: []
250
+ - `dataloader_drop_last`: False
251
+ - `dataloader_num_workers`: 0
252
+ - `dataloader_prefetch_factor`: None
253
+ - `past_index`: -1
254
+ - `disable_tqdm`: False
255
+ - `remove_unused_columns`: True
256
+ - `label_names`: None
257
+ - `load_best_model_at_end`: False
258
+ - `ignore_data_skip`: False
259
+ - `fsdp`: []
260
+ - `fsdp_min_num_params`: 0
261
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
262
+ - `fsdp_transformer_layer_cls_to_wrap`: None
263
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
264
+ - `deepspeed`: None
265
+ - `label_smoothing_factor`: 0.0
266
+ - `optim`: adamw_torch
267
+ - `optim_args`: None
268
+ - `adafactor`: False
269
+ - `group_by_length`: False
270
+ - `length_column_name`: length
271
+ - `ddp_find_unused_parameters`: None
272
+ - `ddp_bucket_cap_mb`: None
273
+ - `ddp_broadcast_buffers`: False
274
+ - `dataloader_pin_memory`: True
275
+ - `dataloader_persistent_workers`: False
276
+ - `skip_memory_metrics`: True
277
+ - `use_legacy_prediction_loop`: False
278
+ - `push_to_hub`: False
279
+ - `resume_from_checkpoint`: None
280
+ - `hub_model_id`: None
281
+ - `hub_strategy`: every_save
282
+ - `hub_private_repo`: False
283
+ - `hub_always_push`: False
284
+ - `gradient_checkpointing`: False
285
+ - `gradient_checkpointing_kwargs`: None
286
+ - `include_inputs_for_metrics`: False
287
+ - `eval_do_concat_batches`: True
288
+ - `fp16_backend`: auto
289
+ - `push_to_hub_model_id`: None
290
+ - `push_to_hub_organization`: None
291
+ - `mp_parameters`:
292
+ - `auto_find_batch_size`: False
293
+ - `full_determinism`: False
294
+ - `torchdynamo`: None
295
+ - `ray_scope`: last
296
+ - `ddp_timeout`: 1800
297
+ - `torch_compile`: False
298
+ - `torch_compile_backend`: None
299
+ - `torch_compile_mode`: None
300
+ - `dispatch_batches`: None
301
+ - `split_batches`: None
302
+ - `include_tokens_per_second`: False
303
+ - `include_num_input_tokens_seen`: False
304
+ - `neftune_noise_alpha`: None
305
+ - `optim_target_modules`: None
306
+ - `batch_eval_metrics`: False
307
+ - `batch_sampler`: batch_sampler
308
+ - `multi_dataset_batch_sampler`: proportional
309
+
310
+ </details>
311
+
312
+ ### Framework Versions
313
+ - Python: 3.10.12
314
+ - Sentence Transformers: 3.0.1
315
+ - Transformers: 4.41.2
316
+ - PyTorch: 2.3.0+cu121
317
+ - Accelerate: 0.31.0
318
+ - Datasets: 2.20.0
319
+ - Tokenizers: 0.19.1
320
+
321
+ ## Citation
322
+
323
+ ### BibTeX
324
+
325
+ #### Sentence Transformers
326
+ ```bibtex
327
+ @inproceedings{reimers-2019-sentence-bert,
328
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
329
+ author = "Reimers, Nils and Gurevych, Iryna",
330
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
331
+ month = "11",
332
+ year = "2019",
333
+ publisher = "Association for Computational Linguistics",
334
+ url = "https://arxiv.org/abs/1908.10084",
335
+ }
336
+ ```
337
+
338
+ #### MultipleNegativesRankingLoss
339
+ ```bibtex
340
+ @misc{henderson2017efficient,
341
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
342
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
343
+ year={2017},
344
+ eprint={1705.00652},
345
+ archivePrefix={arXiv},
346
+ primaryClass={cs.CL}
347
+ }
348
+ ```
349
+
350
+ <!--
351
+ ## Glossary
352
+
353
+ *Clearly define terms in order to be accessible across audiences.*
354
+ -->
355
+
356
+ <!--
357
+ ## Model Card Authors
358
+
359
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
360
+ -->
361
+
362
+ <!--
363
+ ## Model Card Contact
364
+
365
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
366
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de2844a6d4a6f31f542287b75dbee92e8b3c6a3d403b01250e28931b2230f6df
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260