Mollel commited on
Commit
2be4850
·
verified ·
1 Parent(s): 5699d3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -32
README.md CHANGED
@@ -6,6 +6,30 @@ language:
6
  ---
7
 
8
  ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  alpaca_prompt = """Hapo chini kuna maelezo ya kazi, pamoja na maelezo ya ziada yanayotoa muktadha zaidi. Andika jibu ambalo linakamilisha ombi hilo ipasavyo.
10
 
11
  ### Maelezo:
@@ -16,40 +40,22 @@ alpaca_prompt = """Hapo chini kuna maelezo ya kazi, pamoja na maelezo ya ziada y
16
 
17
  ### Jibu:
18
  {}"""
19
- EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
20
- def formatting_prompts_func(examples):
21
- instructions = examples["instruction"]
22
- inputs = examples["input"]
23
- outputs = examples["output"]
24
- texts = []
25
- for instruction, input, output in zip(instructions, inputs, outputs):
26
- # Must add EOS_TOKEN, otherwise your generation will go on forever!
27
- text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
28
- texts.append(text)
29
- return { "text" : texts, }
30
- pass
31
 
32
- from datasets import load_dataset
33
 
 
34
 
 
 
 
 
 
 
 
 
35
 
36
- ```
37
-
38
- ```python
39
- # pip install accelerate
40
- from transformers import AutoTokenizer, AutoModelForCausalLM
41
- import torch
42
 
43
- tokenizer = AutoTokenizer.from_pretrained("sartifyllc/sartify_gemma2-2B-16bit")
44
- model = AutoModelForCausalLM.from_pretrained(
45
- "sartifyllc/sartify_gemma2-2B-16bit",
46
- device_map="auto",
47
- torch_dtype=torch.bfloat16
48
- )
49
-
50
- input_text = "Je moja jumlisha moja ni ngapi?"
51
- input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
52
-
53
- outputs = model.generate(**input_ids)
54
- print(tokenizer.decode(outputs[0]))
55
- ```
 
6
  ---
7
 
8
  ```python
9
+ %%capture
10
+ # Installs Unsloth, Xformers (Flash Attention) and all other packages!
11
+ !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
12
+ !pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
13
+
14
+
15
+ from unsloth import FastLanguageModel
16
+ import torch
17
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
18
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
19
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
20
+
21
+ model_name = "sartifyllc/sartify_gemma2-2B-16bit"
22
+
23
+
24
+ model, tokenizer = FastLanguageModel.from_pretrained(
25
+ model_name = model_name,
26
+ max_seq_length = max_seq_length,
27
+ dtype = dtype,
28
+ trust_remote_code=True,
29
+ # load_in_4bit = load_in_4bit,
30
+ # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
31
+ )
32
+
33
  alpaca_prompt = """Hapo chini kuna maelezo ya kazi, pamoja na maelezo ya ziada yanayotoa muktadha zaidi. Andika jibu ambalo linakamilisha ombi hilo ipasavyo.
34
 
35
  ### Maelezo:
 
40
 
41
  ### Jibu:
42
  {}"""
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
45
 
46
+ # alpaca_prompt = Copied from above
47
 
48
+ inputs = tokenizer(
49
+ [
50
+ alpaca_prompt.format(
51
+ "Rudia tu kila kitu ninachosema kwa Kiingereza kwa Kiswahili wala usiseme chochote kingine.", # instruction
52
+ "Who is the president of Tanzania?", # input
53
+ "", # output - leave this blank for generation!
54
+ )
55
+ ], return_tensors = "pt").to("cuda")
56
 
57
+ from transformers import TextStreamer
58
+ text_streamer = TextStreamer(tokenizer)
59
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
 
 
 
60
 
61
+ ```