File size: 4,414 Bytes
158ab09 fdbf936 158ab09 ceabdcd 158ab09 b4cb7fc 2cb5807 b291a44 158ab09 fdbf936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
language:
- hi
license: llama2
model-index:
- name: OpenHathi-7B-Hi-v0.1-Base
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.49
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarvamai/OpenHathi-7B-Hi-v0.1-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.34
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarvamai/OpenHathi-7B-Hi-v0.1-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.38
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarvamai/OpenHathi-7B-Hi-v0.1-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.46
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarvamai/OpenHathi-7B-Hi-v0.1-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarvamai/OpenHathi-7B-Hi-v0.1-Base
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 5.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sarvamai/OpenHathi-7B-Hi-v0.1-Base
name: Open LLM Leaderboard
---
This repository is the first model in the OpenHathi series of models that will be released by Sarvam AI. This is a 7B parameter, based on Llama2, trained on Hindi, English, and Hinglish. More details about the model, its training procedure, and evaluations can be found [here](https://www.sarvam.ai/blog/announcing-openhathi-series).
Note: this is a base model and not meant to be used as is. We recommend first finetuning it on task(s) you are interested in.
```
# Usage
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained('sarvamai/OpenHathi-7B-Hi-v0.1-Base')
model = LlamaForCausalLM.from_pretrained('sarvamai/OpenHathi-7B-Hi-v0.1-Base', torch_dtype=torch.bfloat16)
prompt = "मैं एक अच्छा हाथी हूँ"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sarvamai__OpenHathi-7B-Hi-v0.1-Base)
| Metric |Value|
|---------------------------------|----:|
|Avg. |46.64|
|AI2 Reasoning Challenge (25-Shot)|49.49|
|HellaSwag (10-Shot) |74.34|
|MMLU (5-Shot) |41.38|
|TruthfulQA (0-shot) |37.46|
|Winogrande (5-shot) |71.27|
|GSM8k (5-shot) | 5.91|
|