File size: 3,164 Bytes
a080377
 
 
 
 
 
3d016d8
a080377
 
 
 
 
 
 
 
 
3d016d8
 
 
a080377
 
 
791b38c
a0fc3a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a080377
 
 
 
 
 
 
b99e8b0
a080377
791b38c
 
a080377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
- lewtun/dog_food
metrics:
- accuracy
model-index:
- name: swin-tiny-finetuned-dogfood
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: lewtun/dog_food
      type: lewtun/dog_food
      args: lewtun--dog_food
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.988
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: lewtun/dog_food
      type: lewtun/dog_food
      config: lewtun--dog_food
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9826666666666667
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9820904286553143
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.9826666666666667
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9828416519866903
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.9828453314981092
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.9826666666666667
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.9826666666666667
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9824101123169301
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.9826666666666667
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9826983433609648
      verified: true
    - name: loss
      type: loss
      value: 0.2326570302248001
      verified: true
    - name: matthews_correlation
      type: matthews_correlation
      value: 0.974016655798285
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-finetuned-dogfood

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the lewtun/dog_food dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1959
- Accuracy: 0.988

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8198        | 1.0   | 16   | 0.1901          | 0.9822   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1