File size: 3,164 Bytes
a080377 3d016d8 a080377 3d016d8 a080377 791b38c a0fc3a3 a080377 b99e8b0 a080377 791b38c a080377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
- lewtun/dog_food
metrics:
- accuracy
model-index:
- name: swin-tiny-finetuned-dogfood
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
args: lewtun--dog_food
metrics:
- name: Accuracy
type: accuracy
value: 0.988
- task:
type: image-classification
name: Image Classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
config: lewtun--dog_food
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.9826666666666667
verified: true
- name: Precision Macro
type: precision
value: 0.9820904286553143
verified: true
- name: Precision Micro
type: precision
value: 0.9826666666666667
verified: true
- name: Precision Weighted
type: precision
value: 0.9828416519866903
verified: true
- name: Recall Macro
type: recall
value: 0.9828453314981092
verified: true
- name: Recall Micro
type: recall
value: 0.9826666666666667
verified: true
- name: Recall Weighted
type: recall
value: 0.9826666666666667
verified: true
- name: F1 Macro
type: f1
value: 0.9824101123169301
verified: true
- name: F1 Micro
type: f1
value: 0.9826666666666667
verified: true
- name: F1 Weighted
type: f1
value: 0.9826983433609648
verified: true
- name: loss
type: loss
value: 0.2326570302248001
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.974016655798285
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-finetuned-dogfood
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the lewtun/dog_food dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1959
- Accuracy: 0.988
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8198 | 1.0 | 16 | 0.1901 | 0.9822 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|